
UNCLASSIFIED

AD NUMBER

AD866166

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; FEB 1970.
Other requests shall be referred to Rome
Air Development Center, Attn: EMNRR,
Griffiss AFB, NY 13440.

AUTHORITY

RADC USAF ltr, 15 Dec 1971

THIS PAGE IS UNCLASSIFIED



r



i.

BAYESIAN RELIABILITY DEMONSTRATION:
PHASE I - DATA FOR THE X PRIORI DISTRIBUTION

R. E. Schafer
John Collins
M. L. Luden

S~et al

Hughes Aircraft Company

This document is subject to special

export cwitrols and each transmittal

N o of 13440.

N.Y 140

q|



'FOREWORD

This final report vas prepared by John Collins, M. L. Luden, Dr. Nozer
Singpurvalla, Tom Sheffield and Ray E. Schafer of Hughes Aircraft Company,
Ground Systems Group, Fullerton, California under Contract Number F30602-69-
C-0042, Project 5519, Task 551902. The RADC Project Engineer vas Anthony
Feduccia (EMNRR).

This technical report has been reviewed and is approved.

AlllORMN J. fPa 1

BellAbilty Zgiraering Batics
Reliability Ranch

Approved:~ // fAJ

uib iity & Costwb±lity mDvl c

FOR THE COMMANDE

•~I VI#vl. CJ. ABEUVAN
i •Chief, Plans Office

ii

,!! .



ABSTRACT

This final report is a result of a study performed for RADC under
Contract Number F30602-69C-0042. The purpose of the study was to fit one
or more prior distributions to e = ?4BF - Mean Time Between Failure.
In particular, the objectives were three:

i) Establish criteria for data that would be suitable
for fitting prior distributions to 6 = MTBF.

ii) Develop methods of fitting and fit one or more
prior distributions.

iii) Perform robustness analysis of fitted prior
distributions.

It was discovered that if the number of identical equipments and number
of failures observed per equipment are relatively small, special methods of
fitting are required. For the data used in this study, the inverted gmma
distribution turned out to be a good prior fit.
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EVALUATION

A thorough review of the available literature on Bayesian reliability
(as listed in Section 11 of this report) will reveal that very little,
if any, effort has been directed towrds developing methods for fitt•ing
prior distributions to emirical data. Usually, priors are determined
through engineering judgmnt, personal experieuce, and vide-scale
assumptions. Such means of developing priors are unsatisfactory if
Bayes' methods are to be used in equipment reliability demonstration.
The objectives of this Phase I study wern to (a) establish data
criteria for use in fitting priors, (b) develop methcds of fitting
and actually fit one or more priors, and (c) perform robustness
analysip of fitted priors. The results of Phas. I show, for the first
time, how pricors can be fitted to empirical data, the amunt and type
of data required, and the effect on the posterior distribution of varying
parameters of the prior distribution.

Each of the objectives of Phase I vs successfully comleted. Section 5
shove, for three form of operational data, the -4nima values of "n"
(number of equipments) and Wk" (number of failures per eVuipment) required
for fitting a valid prior distribution to M. results of this
section provide a firm foundation on *•ch future data collectiou
program for fitting priors can be bead. Section 4 present mstWde of
fitting prior distributions and includes seven invrted pm primr
fitted to aqitrical data collected on seven different types of equipment.
These results confirm the practicality of the BVes' method In reliability
demonstration, and provide justifisation for the use of the inverted
thu an the prior distribution on equot f. lectron 7 contains
the results of the robutneial sis perfoised to invetitate the
effects of erroe en sezartnre the scale san sbap pte foters of tb*
ierted soma prior t p or inverted, distribution. Xn

aetion, rs prevlout l stated, Seciior a Inplut es a tote ol Xestive," 78-et bl•Ibograpby of scum" on Beye' rellabiltyl,

Th metod devloped in thi stA iere bae on "equtp;lSt" level •lMt1

wasassume to be exponntial. Bowe~r, It "i' to note tbat this--
methods given bare are Seners1 aeplicble ýdtever tbw foru of t•w
conditional distribution

Mtae I results Vill "rye " Isprtant inut to the PbNe nX Stud

vtich Is scbeduled to start In FebruerY 19O. On loOdS dwelPd end
data criteria establishad In Phsse I Ill be used to fit e4dditioM
priors on other equipment types in Phase n. In adsmiton, ths next

iv

• -- ' - : Lm ._C I 2- • __ • r



pbase vllU include the investigation of metbods of combining priors from
similar, but not identical, equipment. Phase 1I objectives also id ude
the establisbment of plans for developing and inlementing Bayesian
reliability demonstration tests, as a prelude to the projected F1-71
Phase In study.

leliJablity &GIn~eer Section
Reliability Branch

I
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0. 0 SUMMARY

The knowledge of the prior distribution is central to the efficient use
of Bayes methods in reliability estimation and demonstration. This study
presents methods and examples of fitting prior distributions when the data
available is:

i) n sample MTIF's on n identical equipments.

ii) n observations on the number of fai-lures occurring in a fixed time
T for n identical equipments.

This data must be used since samples from the prior distribution itself,
i.e., the true MTBF, are unobtainable. Two cases were considered: the family
of the prior distribution being specified and unspecified. In case the
analyst is unw•iling to specify the family the methods are not wholly satis-
factory; the most suitable being a method due to Krutchkoff and Rutherford
which requires the prior distribution belong to the Pearson class. When the
family is specified (e.g., inverted gamma) methods are presented which use
the known marginal distribution to fit the prior distribution. Some diffi-
culty is experienced when the &=aple sizes (Kj) for the n sample MTIF's are
not all identical and small., ;:± •is case a mixed model for the marginal
distribution is used. If the A / •re all large (roughly > 30) even though
not identical the marginal disitrilution approaches the prior distribution
rapidly. If n and lyK.l are both large the data is fitted directly to the
prior distribution.

The results are given in the following tiable:

General Methods of Fitting Prior Distributions

Family Unspecified Estimate first four moments
(all valueo of n arid lKil). of prior distribution from

data and %,se Pearson class.

Family Specified
IKij large, n 2
large enough to use X test. Treat data as though it came

from prior distribution and
use classical methods.

1 Kil small, n Fit data to known Mrginal
large egough to use mixed using classical methods.
model N' ,test,



In the taxt, specific results are given as to the meaning of ,large"..

n = number of identical equipments.

= nVMber of failures observed an the ith equipmnt.

ii
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1.0 INTRODUCTION

.-1 OBJECTIVE OF THE STUDY

There are a number of measures of reliability. The most important are

i) Mean Time Between Failure (MTBF).

ii) Failure Rate.

iii) Probability of Survival for a fixed time T.

iv) Time, say x . for which the probability of survival is p. That is,
P thx is the (lp) quantile of the time to failure distribution.

It is customary in equipment/system development to place certain specifica-
tions on one or more of the above measures. Demonstra.tion tests (in statisti-
cal language hypothesis tests) are a fundamental tool in verifying that these
specifications have been met. Unfortunately, the demonstration tests are
conducted in an environment of

H High reliability requirements.

* Limited funds.

e Short time available.

Generally, the precision of the demonstration test increases as the number of
failures observed increases. But high reliability requirements mean long
times to observe failures. On the other band, low producer and consumer
risks are desired and this also means long test times. This creates a cost/
time problem which is apparently unsolvable by classical methods. In fact,
Bayes methods apparently hold the most promise in solving the cost/time
problem of demonstration tests.

In many sampling situations, Bayeb methods are not applicable because
the unknown parameter (here, MTvBF, failure rate, etc.) cannot be considered
a random variable, which is a "must" to use Bayes methods. However, it is
clear that in reliability the parameter can often, if not always, be con-
sidered a random variable. Consider a computer manufactured by a particular
Company to a particular design; each successive computer differing in serial
number and parts. Because of these part (not part type) differAences and
other differences, each computer will possess a different true (but unknown)
MTBF = 8 and hence, MTBF - 8 may be considered a random variable. The essence
of Bayes methods is that a probability distribution is assumed to exist on the
parameter (here, measure of reliability) in question. This prfbability

3



distribution is called the prior distribution.*

The measure of reliability considered tLrou4hout this study is i) above,
namely, the very important KW - 8. Not only is MTBF most commonly used as

a measure of reliability, it has the advantage that it is a parameter in the
tie to failure distribution, which results in variables type data rather
than ili) and iv) above, which result in attributes data. Thus, MTBF permits
a parametric rather than a nonparametric approach.

In sumary then, to use Bayes methods a prior distribution is needed.
The basic objective of this study Is to fit one or more prior distributions
to KM - 8 for ground electronic equipsents. In doing this, there are many
related questions so that the study objectives are more particularly stated
as:

1) Establish criteria for suitable data for fitting prior distribu-
tions to 8,

ii) Fit one or more prior distributions.

iii) Perform robustness analysis of fitted prior distributions.

All these objectives were accooplished and are discussed in the appropriate
sections.

The next section gives sore detail aDd insight into the use of Bhyes

Methods in reliability.

1.2 INTROUCTIIW TO BUES METH(X IN RELIABILITY

A classiclc lover one sided confidence interval for 0 (ArBF) consists of
a statement that

P( a .)-1-Y, Y ml and is preumed after tte data is available.
The probability can only be interpreted as a confidiece. A Classical 'e. g.,
NIL-WD-781D) reliabllity destration test exasists of preselecting i.e.,
before the dat is ptbored)

a -e (aino=a acceptable MW) &ad a * •C•umer's risk. In order to

determine a unique test it is dlso required to "add" a 90 (specified WnW?)
wA a a protl•a's risk. It 1 j interesting and informative to dvell on the
"Onmes* oatf 0M a %#, i.e., minlm acceptable and specified respectively.

ae mSigt think, in view of the moe" of ft that 00 woul be called msxima
seoeptable or simply acceptablt 0. I1; this were so, things oculd be very
misleading. That Is, 0, *1 ame well sied now. The new for S, depitts
wbot It reeL~y Is: a Mrespcfied lower confidi-nee limt. The zame for So
dejirts •hat It reell Is: an "add on" to obtaLin a unique test. Briefly, it

Is Comamers who doma tests. Tbey specify (o91,S). Once haling. done this
the ZMa!r sec•q. ta (-ique)j t• t suitable to hUs.

In the e meathztlal literature, this prWcr distribution is stmetims

calw teinf or I1g distri1bution.
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Using Bayes methods it is possible to prepare a probability (as against
confidence) statement to the effect

P(O a: 0* observed data) = 1- y(12)

A unique Bxyes demonstration test can be achieved vith various "add ow" but
that is not the subject of this report. The important point is the conition-
ing random variable "observed data" in (1.2.1) above. It is luaterlal vhat
it is as long as it is a sufficient statistic for 0. Scmetimes the vector
of failure times (xJP ... , xK) my be used and sometimes the observed KFW
A
B may be used. In any event to prepare (1.2.1), i.e., a Bayes confidence
interval,

A

P(06 a 0& 1observed data-) f g(IO d9,
e.

the posterior distribution of 0 is required. Here we have illustrated it
and v cntF'e to illustrate with the conditioning randma variable*.

Clearly,

A A
g(6I) - f(0~ht1e) ; f(e) 1(0.

f(s)

Thus, to obtain a Bayes confidence interval one must have

i) The prior distribution g(e).

ii) The sampling distribution of the conditioning statistic given 0,

AA

iiI) The margiml diectribution Of the statistic f().

Each of these distributions, particularly 1) ad 1l1) aoe, play a vital
role in this report. Tbe object is to fit g(g). The dAta .thbeed for this
study is at the e*qupwmt level and it is asumed tbronat that the cw-
ditiouRal distri~eztioa atf times to failure given So i.e.,q t(SIS), Iseapn
tial so that f(914) Is gun. It Is thes relatlvel~y simpl to find tft
once the prior distribution is specified since

- ( to (I0g(e) as (1-2-3)

In am eases the observed rando variable Is the number e2 tailee (my a)
occurring in a fix"d tim period T so that the f(xis) is Paison eI* the
marginal distribution of x is

5



f(x) f(xlO)g(o) do (1.2.4)
0

Tbu,, of the four (4) distributions of (1. Za2), only tvo (2) are unknown in
the sense they must be estimated since the marginal distribution in the
denominator is obtainable through g(9) and f(4i9).

1.-3 THE CENTRAL PROlEM

The central objective of this study is to fit a prior distribution to
sae re]labilitl data; the central problem is that for a given piece of
eqj4pent the true 6 is unknown and remains unknown unless an infinite number
of failures are observed. This, in fitting g(O), one does not even have
random samples from g(O). To obtain a random sample from g(G) would be to
know the MW)F of an equipment exactly which is impossible. There are then
two sample sizes of concern. First, the number of "identical" equipments
samped which we call, hereafter., n. Second, there is the number of failure
times available on each equipment which, for the ith equipment, we call Ki
and for all n eiyipents we denote the set of Ki as (Ki)n. The situation

is depicted below in Figure 1.3. The squares represent identical equipments.
In this case x represents lifetime.

2 n

x1 x 2 1  X

x x x
12 22 n2

Figare 1.3 Varlsbles Involved in
Flttin9 a Prior Distribution
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At first thought, one might be tempted to plot the G's (somehow weighted

for unequal K's) in a histogram and by usual methods fit sow prior distritu-
tion. To see that this is not corzect, consider first the case of identical
K's. If the a's were plotted in a histogrpa and n taken very large the histo-

A
* pgam would look very much like fP(). -we are essentially "smimng" ovt~r 9

in the Joint density h,(O@,). !,at is, each sample involves a pair

i.1, ... , n but the coponent is unobservable. Th•s, each a
be considerd a random sample from f,(G). In the case of unequal K's (but not

all necessarily different) things get Ressy quickly but & mixed population
model appears descriptive, i.e., each B is regarded as a random sample from

A f (A) + .... , (
f~~nme o• iilnnc (a) a p saPtftg

Where t is the number of distinct Ki's and number of identical K's
n

also Epi - 1. The numerator in Pi is taken after renumbering te obtain different 1
ts.

This model will be discussed in more detail in Section 4.0.

The important point of this whole discussion Is:

Whatever methods are developed for fitting the prior distriaution,,
the data to be used will be data which is taken from the msrginal
distributlon not from the prior distribution

The next section gives definitiaus which will be uted throughout this
report.

sbo Definition

A The moober of identical tqpifts us". to ftz a
prior distribution.

KX 1104 DQber of ft1ibX"1 anilbl ith O pmolb
i'l, .... n

'T-otalL test tim tat jth

K,
0 The uOU•A WV ot an *qWu± rt.
X The z•*MI variable denoting either tim to tfhuxe W

'MOW' of tiUres in a fixed tim. Theo tt W41l
azte c.3er vrtd. is being discussed.

x A ,;tloules vale of X.

7,
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Symbol Definition

2 th
Xqu The q quantile of the CUi-Square distribution withu degrees of freedom.

g(•t) The prior distribution on the random variable 0.

g(610) The posterior (conditional) distribution of t having
observed

f(Olt) The conditional distribution of 0 foz fixed 6.

ye) The Mginal (or imconditionas) distribution of
where ic blased on K failure's.

f(x) The marginrl (Or unconditional) distribution of time
to failure or number of failures per fixed time T.
The contc.t will make it clear which is being discussed.

f(xIO) The conditional distribution of time to failure (or
failures per T) for fixed S.

One of the important assumptions of this report is thnl, the canditioral
distribution of ime to failure for fixed 8 ic e.pone-itial:

f(xia) - l/b d x/8 x,0 > 0. (1.4.1)

Kence, the number of failures occurring In fixed time T is Potsson:

f(.1e) T -) T,6 > 0 (1.4.2)
x 0,, ...

The rltimate a&i or fitting prior distribut~oas In reliabillty is Byeo
dowmetratlon tests. Since damsntrat. on tests es wit generally applied
at e9Iont/syntem levelo rather than part .evels the study was restricted
to thl. level of data. For this resson, the exponential aeswuptlcn was felt
to be valid since it bee been experienced repeatedly and certain limit i
theorem (e.g., the tbinick theorem) indicate an expowential distribution is
to be expe-cted for complex equiaent. However, the methods develoed here

.- w appliabl vwhatever the form of the conditioofl distribution.
Wt might t• ý4 r other coaditioau diRsT batione 1b that the
arltbst!c will rapidly became intractable.

---
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SECTION 2.0 DATA COLLECTION

2.1 TY!ES OF DATA

Failure data can occur in several forms. It is divided into two in
classes: attributes and va•iables data. The attributes situation occurs
when an equipment is operated and its survival or norasurvival for time T
(usually mission time) is observed. Due to the nature of this type of data,
attributes data was considered unusable for this study, therefore, no data of
this type ias collected.

The variables data situation occurs when the actual failure times are
available. These times occur by agreeing to stop testing ei-ther after a
fixed number of failures have occurred or after a fixed time has elapsed.
The former case is called a censored test and the latter is called a
truncated rest. Often the failure times themselves are not available but
the pair (9 - observed 14Y3F, K - number of failures) 1s available.

2.2 DATA COLLECTION PLAl

The search for potential data sources was initially limited to Hughes
Aircraft u-d Government sources. A couplete and ccoprehensive search for
high qualit reliability data on ground eletronic equipment was cnducted
in all of Hghes Aircraft Divisions including the Quality, Rel 4ability,
Effectiveness, Field Service Organizations and the skjor Goverment data
centers mintained by the U. S. Govermnt Agencies. Mach data was available
but due to the high quality restriction: equipment,level with n fairly large,
the amount of data umetul for the establisbmnt of & prior-1, distributions was
greatly reduced. The data location effort in the later pbese of the search
included contacts in private industry. Due to the nature of the data (KWrE?)
requested and proprietary rights of the contractor we could obtain n data
frow industry.

2.3 DATA C01ECT'D

2,13.11 HGHS INrEDML SIRCS

The primary s*Arc, of hiob qual.tty data for estab.•siing a prirl Uis-
tribtions was Rugbes Aircraft Coppany. ihe SAO** A~rosJc.%& Divisin bas
performd A(a tests on various Lgbes bult tlUectronic stiaipomnt. The
Mluges eouand Systems group ka. collected data on its sys1ms &M -equlp at
foar mny years. This drta Includes both laboratoy and field psrftjis 4!
data.

Table 2.3.1.1 lists the data located and aciare4d vthitii Huas Alrcraft
for utilisation in thla study.

9
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TANLE 2.3.1.1 JIJGES AIRCRAFT COMPANY ACQUIRED DATA
Assigned
Data Set Equipment n E K Type of Tests

Number

9. Iram Comuter 28 44 Lab (AGREE)

10. *lti-mode Storage Tube 20 24 Lab (AGREE)
Indicator (Display Tube)

Infrared Subsystem in 42 106 Lab (AGREE)
Pire Control Systems
(MG-13)

12. H-3118 Computews - 43 2779 Lab/Field

13. Display Console 48 314 Lab/Field
14. H-3182 Converters D-A 19 102 Lab/Field

15. Magnetic Tape Units 14 50 Lab/Field

16. Infrared Subsystem in 43 99 Lab (AGREE)
Fire Control Systems

17. Rapid Tune Subsystem 12 41 Lab (AGREE)

2.3.2 GOVERNWjFWP DATA SOURCES

The search for and ac~quisition of data from the major data centers main-
tained by the U. S. Government Agencies was done by direct contact. Because
of th- vast amount of data collected and available in the Government data
cinters, the efforts were directed to collecting only adequate and useful
data. It was felt that a visit to the key data centers was a necessity to
assure a thorough analysis of the type of data collected and the correct
data retrieval methods.

The agencies visited were:

1) U.S. Army Maintenance Coummand Logistic Data Center (USAMCLDC),
Lexington, Kentucky (TAERS data).

2) U. S. Navyy, Washington, D.C. (3M data).

3) U. S. Navy, Norfolk, Virginia, Statistical Engineering Brench,
NAVSECW(RDIV.

4) U. S. Naval Fleet Missile System Analysis and Evaluation Group
(PFEAG), Corofa, California.

10
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5) U. S. Air Force Logistics Command, Tinker Air Force Base, Oklahoma
City, Oklahoma (66-i data).i

There was no reliability data available on electronic equigment at the
USAMC Logistic Data Center due to the lack of contirol of serial number
assignment to end items and usage. mdic tin devices being almost non-
existent on electronic equipment re~ulted .n no usage time; therefore, no
14TEF data is available through TAERS.

An additional request, suggested by t.•e USAX7,=1C was made to the U. S.
Army Electronics Command in Fort Monmouth, New Jersey, Applications Engineer-
ir4 Branch which resulted in MBF dataan ra±io 5ets but was unsatisfactory
(n too small) for use in establishing a prJ.,i distributions.

The investigation of the 3M data collection system maintained by the
Navy yielded no reliability data; i.e., MrBF's. The Statistical Engineering
Branch in Norfolk, Virginia bad some reliability data but not of the quality
of data necessary for this study. A trip to the U. S. Naval Fleet Missile
Systems, Analysis and Evaluation Group in Corona, Califoraia was made in
search of MTBF data on surface missile systems. Agin, the qualiLy (n too
smaUl) of data was unsatisfactory for the prior distributions requirement.

A visit to the Reliability Branch at Tinker Ai Force ase in Oklahoma
City, Oklahoma resulted in acquisition of reliability data on ground ccauami-
cations radars. Table 2.3.2.1 is a list of equiments from which 66-1 form
data was obtained. All of this data was based on a fi- d time T of 43)
hours.

TABLE 2.3.2.1 TINKER AIR FORCE BSE ACOUIRED DATA

.ssigned
Data Set Equipment n EK

Number

1. MfI Reflector 41 173

2. HVPS (High Voltage 74 475
Power Supply)

3. Synchronizer 59 265

4. Oscilloscope 51 159

5. Video Ap er 92

6. Synchronous Power Supply 55 183

7. Search Indicator 58 266
8. Servo Amplifier 50 194

.. ....



2.3.3 DATA SOURCES !

1. Interceptor Iprovement Pr•grM IF. Reliability Testing, Final
Report, May 194j, Hughes Aircraft Company.

2. WVT Production Reliability Testing, "First Reliability Sampling
Test Rep,,t," July 1957, "Becond ffelibility Sampling Test Report,"
October 1967, "Fourth and Final Reliability Sampling Test Report,"
December 1967, Hughes Aircraft Company.

3. MA-/AýJ/ASQ-25/M6-13 Interceptor Improvement Program, "Rapid Tune
Reliability Testing," November-December 1965, Hughes Aircraft
Company.

4. Ira Production Reliability Tests, Final Test Report, June 1968,
Hughes Aircraft Ccupany.

2.3.4 S•J3WRY OF DATA AVAILABILITY

It Is well-known in statistical anwlysis that data can arise in two ways:
i) after the fact, ii) as a result of an experiment designed expressly to
answer specific questions; for example, to fit a prior distribution. The re-
salts of this study make it clear what to do if data is to be gthered ex-
pressly to fit prior distributions. However, if time and money are not
tvailable for the second approach above, already existing data must be used.
The results of the data search indicate there is not much suitable data
available. The reasons are primarily two

1) Not much data is available on l numbers of identical equipments.

2) Most data, already in existence, involves different numbers of

failures or different (fixed) test time on each equipment.

The two reasous above are somewhat different in character. The first,
primarily, causes poor fits while the second makes it difficult to apply the
methods of this report at all.

Since large amatnts of data are not available through government sources,
the data for prior fits nust come from industry. The picture may appear
unnecessurily bleak: the results of Sections 4.0 and 5.0 indicate data
requiremnts which are not too stringent.

12
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SECTION 3.0 FUNCTIONAL IZVEL - TH CONDITICIAL DISTRIBUTION

In using Bayian methods the prior distribution receives a good deal
of attention - and rightly so. However, in any analysis involving actual
data (1) the conditional distribution of (X 18) nst also be known. This
conditional p.d.f., sometimes called a samplJng distribution, receives less
attention because, usually, more is known about it than about the prior
distribution. For example, if several -mchinms are turning out a large number
of bolts which can be classified only as good or bad then for fixed fraction
defective p the sampling distribution or conditional distribution is hyper-
geometric or binomial depending on the finiteness of the outputs. Thus,
often the physical process dictates the sampling distribution. In other cases,
experience has dictated what to expect for a conditional distribution. That
is the case here. We have aszmwd that the important Bayes testing applica-
tions will be made at the equipwent (computer, radar, oscilloscope, radio,
etc.) or system level. In this case, it has been dmonstrated many times
both by limit theorems and empirical studies that if the random variable is
time to failure, a good descriptor of the conditional distribution is the
exponential, i.e.,

f(x )= 1/0 x, >0

=0 elsewhere.

Then the distribution of the number of failures in fixed time T is
Poisson, i.l.,e

f(xlO) = -T/8 (TIWX t, 0> 0

- 0 elsewhere.

It should be understood that the methods given here are illtateand fully
developed for the above two conditional distributions but that in genrl the
methods are applicable to any conditional distribution provided the identifi-
ability criterion is satisfied (see Appendix, Section 9.4).

If it should turn out that the conditional distribution is Weibull, then
the am general methods would apply with the exception that the prior
distribution would be two (2) variate. The mjor changw then would be that
the arithmetic would become much more intricate.

13
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SECTIM 4.0 bSTHOIM OF FITTING PRI(R DISBTRIHJTIONS AMD RENJLTS

The cbJective of this section is to develop methods of fitting prior

distributions to 0 a MW when data occurs ir any one of three (3) forms.

TMpe 1 - The recorded data on a piece of equipment is number of failures
- occurring in a fixed time T, T identical for all n equipments.

TypeM - The reprded data on a piece of equipment is the observed

MIW, 0, and the nmmber of failures on each identical equipment
is a fixed K.

Ty. - The recorded data is the same as Type 2a but the number of
failures on each Identical equipment my vary.

Two came were considered: the family of the prior dixtributl on unspecified
and specified. Thee are discussed in more detail in Section 4.2.1

Remflts

lfJily of prior distribution unspecified, all types of data.

For the family completely unspecified the methods found were
unsatisfactory for two reasons, the first being the most important.

1) They give only an eupfrical distribution for the prior
and do not Identify a family.

2) They are extreme1y com.ax to apply.

If one Is willing to assum the prior distribution belongs to the
Pearson faml•y, the Krutcbkoff-futhbrford method Is easy to apply
but requires an enormous nuimbr of identical esWuint for good
remults.

Fly of ror distribution upcified, all ýt sof data.

Wben the faily i speclfied, the steps in fitting the prior distri-
tation are si Ol eoug.

1) efrive the mrginl distribution uWwtb th assmmd prior family.

V$
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2) Estimate the puzmetews of the m•rginal (and hence, prior)
distribution.

3) Pe•fo, a X2 test of goodness of f1t to the! aed
distribution.

4) Assign appropriate prior distribution.

In this rep•rt a prior inverted Wm faly was assum•. The apluop'ate
marginal distributions are dexived in Section 9.2. The appropriate at*"
are discussed in detail in Sections 4.2.2 and 4.2.3. The remlts ae given
in Section 4-3.2. Briefly_, it was found that for type 1 data, of which
there were eight (8) sets, seran (7) were found to be good Inverted VMr
fits. There was no type 2a data and for type 2b data fits could not be
obtained because K (the number of failurwavailable on each equpament)
varied too suh compared to the available umber of units n.

4/
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4.1 FITTING THE PRIOR DISTRIHJTION WHEN THE FAMILY IS UNSPECIFIED

The case when the analyst is unwilling to assume any knowledge of the
p-tior distribution is extremely difficult and remains, at this writing,
e25ssentially an unsolved problem. An idea why can be obtained by looking at

the classical x2 test. Even in this test the family of the fitted distribu-
Aion must be specified. The methods we will discuss here all have one point

in common.
A A

They all use the data (xl, .. xn) or , On e) to estimate the

MOMENTS of the prior 'distribution and then apply certain uniqueness theorems

between a sequence of moments and a distribution.

The extent to which a sequence of moments determines a unique probability
distribution AND how one is to discover, having a sequence of moments, to

which probability distribution it corresponds is a difficult problem (see

Shohat, J. A. and Tamarkin, J. D. (1943), The Problem of Moments, Amer. Math.

Society, New York). The methods to be discussed assume some of the difficul-

ties away.

One method of interest is given by John E. Rolph (Bayesian Estimation

of Mixing Distributions, Annals of Math. Statistics, Vol. 39, No. 4, August

1968). In this paper Dr. Rolph assumes a prior distribution (uniform) on the

family of prior distributions. Moreover, he assumes

i) The parameter space 0 is limited to [0,l], i.e., 0 r e 5 1.

ii) The conditional distribution f(xle) must be a polynomial in 0 and

be a discrete distribution.

The first aP3umption is needed to use the theorem that a probability

distribution oil [Ol] is uniquely defined by its moments. The first assump-

tion also permits the prior distribution on the family of prior distributions

to be assigned to the moment sequences. The second assumption permits the

marLinal distribution

f(x) = (xle)g(e)de
0

to be written

f(x) = apxiiI

wheze is the ith moment of the prior distribution. Thus, a sample

16



(xI, ... , xn) from f(x) can be used to estimate the moments of the prior dis-
tribution and hence (because of uniqueness) estimate the prior distribution.
The estimate constructed in this manner is consistent.* The required computa-
tions are quite involved, sarely requiring a computer program since a number
of relatively high order determinants are involved. This method is not
directly useful here since the restriction of 6 to [0,13 is untenable. How-
ever, it is mentioned since, in thki exponential case, the reliability function

R(T) = e-T/O T fixed,

always satisfies 0 5 R(T) - 1. Thus, a prior distribution could be fitted
to R(T) and then a change of variable

6 = -T/fnR

leads to a prior distribution on 6. It is not possible to do this in this
study because repeated observations with T fixed are not available from the
data search. It should be noted though that if it were possible to make
successive Bernoulli trials then the conditional dis-,ribution of f(xIR) :Ls
a polynomial in R and the method (with the c•hange of variable 8 = -Tni)
could be used to fit g(e).

Howard G. Tucker has given a method for estimating the prior distribution
when the conditional distribution f(xle) is Poisson (An Estimate of the Com-
pounding Distribution of a Compound Poisson Distribution, Theor. Prob. Appl.
8, 195-200, 1963). Here, the observed random variable x is not lifetime but
the number of failures occurring in fixed time T. Thus, it is assumed that
random samples (xl, ... , xn) are available from the marginal (discrete) dis-
tribution f(x). Again, the uniqueness of the moment sequence for the prior
distribution is used to obtain a consistent estimate of the prior distribution.

Nov, we assume throughout this study that for lifetimes, the conditional
distribution of' lifetime given e is known and that though each of the n O's
is unobservable (bec-ause a for each equipment is unknown) samples are available
from f(xlG), where X represents lifetime. The sample size from f(xle) will
be denoted by Ki for the ith 6. We are particularly concerned with methods
which can deal with the conditional distribution : , (AKI e6) since often the

only information available to the analyst is the pair (•,Ki) rather than the
lifetimes (X., .. , XKi).

The case Ki large i-l, ... , n(e.g., Ki > 30 all i) can be dismissed more
or less out of hand since (see Section 9.5) the Joint (marginal)
distribution f(•l, 02' ... Yn) can be used directly to fit the prior
distribution g(e). Before proceeding to other cases, it is well to

Roughly, a consistent estimate means that in the limit, i.e., as n -CO
the true prior distribution will be known exactly.

17



clear up some terminology. In reliability work the estimation of the prior
distribution is called fitting a prior distribution. In some of the more
theoretical work, it is called: estimating the imixcng distribution or some-
times: estimating the compounding distribution. Thus, in the statistical
literature, the prior distribution is sometimes called mixing distribution or
the compounding distribution.

The final method we discuss for fitting an unspecified prior distribu-
tion is the Krutchkoff-Rutherford (hereafter, K-R) method. Strictly speaking,
the K-R method is not usable when tho prior distribution is completely un-
specified. The K-R method requires that the prior distribution belong to
the Pearson family of curves. This is not very restrictive since the Pearson
family is a rather large family (e.g., it includes the inverted gamma distri-
bution). It turns out that members of the Pearson family are uniquely deter-
mined by their first four moments. Thus, computations are greatly simplified
(still requiring a computer program though) as regards the previous two
methods discussed. As in the other methods, the K-R method leads to consis-
tent estimates. There are two serious shortcomings with the K-R method:

i) It is not always usable.

ii) It has large and unknown sampling errors.

The second shortcoming is common to all the methods discussed but is
particularly true of the K-R method because it uses only the first four
moments. The first shortcoming above is the most serious. If the sample
second central moment is negative the K-R method cannot be applied. The K-R
method was tried 3n seventeen sets (seventeen different types of equipment)
of data. Only four sets resulted in an estimate of the prior distribution,
the other thirteen resulting in negative sample second moments. The K-R
method is discussed in detail in Section 4.3.1 of this report.

4.2 METHODS OF FITTING PRICR DISTRIBUTIONS WHEN THE FAMILY IS SPECIFIED

4.2.1 INMTODUCTION

The problem of fitting a prior distribution is much simpler when the
prior distribution family is specified than when it is unspecified. Once a
distribution family (e.g., inverted gamma), is assumed for the prior then
fitting the prior is a two-fold procedure:

1) Obtaining estimates of the parameters of the prior distribution.

2) Testing the validity of the assumed prior by a goodness-of-fit
test.

Before discussing how 1) and 2) are carried out the general setup is
recalled:

18



There is a prior distribution g(G) on the para'meter e, where e is
always considered the mean of an exponential time-to-failure distribution

(i.e., f(xle) = (/e) e_ý/G). Sample values from some observable random
variable are available. In this study, only two types of observable
random variables are of sufficient practical interest to be investigated:

Tp 1. The observed random variable is the number, X, of failures of
a unit occurring in a fixed time T. X is a discrete variable,
taking on orly the values 0,1,2, ... Observations on X are
obtained by pitting n units on test for time T, and recording
the number of failures for each unit (xz, ... , Xn}.

A
Týype 2. The observed random variable is the sample MTBF, 6. Two cases

are possibl.e here:
A

Type 2a. Each value of e iR based on a fixed number of failures, K.
Sample values of U are obtained by putting n units on
test and recording K failure times x ... , xi,K for

each unit i=l, ... , n, and then computing

SL xi K, i=l, ... , n. (Note that since eis a

sufficient statistic forA(Xl- 1 *"., Xi, K), one hae no

need of the xj s once ai has been computed). 0 is a

continuous ranelom variable defined on LO,9px],(sssuming,
of course, that 6 also is).

A
Type 2b. The values oJ 6 are based on different values of K. This

is the case of practical interest. Data in the form of
Case 2a doeEs not occur in practice, but Case 2a is in-
cluded because its treatment is ana3~ically simp±113 and
sheds light on Case 2b. Foý this case, the observed data

is in the fo.rm of n pairs (Di,Ki), where Ki is the number
A

of failure times used for the computation of V

Whether the observed data is of Type 1 or Type 2,

the situation is the same: the observed data is not from
the prior g(e), but from the marginal distribution f(x)

A i
(or f(a)). Hence, the data cannot be fitted "dirextly
to g(e) However, when g(e) is specified, f(x)(f(q)) is
uniquely specified,, since

f(. 'I. fg(e)f(.le)d0

0
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and f(xlo)(f(6'e)) is specified as a particular Poisson
(ganma) distribution by the exponenti.al assumption.

A
Since the parameters of f(x)(f(e)) include the parameters
of g(e), one need only estimate the parameters of the
marginal to obtain estimates of the prior parameters.
Also, because of the unique association between the
prior and the marginal, a goodness of fit te-st of the
marginal also serves e.s a goodness of fit test for the
prio3:.

In summary, a specified prior yields a specified marginal contain-
ing the same parameters. Since the observed data comes from the
marginal, one can fit the data to the marginal using any appropriate
classical methods of parameter estimation and goodness of fit tests.
In the process, the prior g(e) is also fitted.

In the following sections, s-kcific formulas are derived for fitting
the prior when the specified prior fami.y is the inverted gamma distri-
bution

g(6)=-(e-

The inverted gamma prior distribution is selected because it is
a •';o parameter distribution, very flexible, and the natural conjugate
when the conditional distribution is exponential. Also, when the
observed dat3. is of Type 1 or Type 2 -above, the marginal density is
available in closed form.

The method selected for estimating paramwters is the method .f
matching moments. For goodness of fit, the x• test is used.

4.2.2 PARAMETER ESTIMATION

4.2.2.1 PARAMETER ESTYAWTION FOR TYPE 1 DATA

When the observed statistic is the number of failures, X, occurring
in fixed time T, then its distribution is Poisson,

f(xle) -T/ T,e > 0 (4.2.2.1.1)

x = 0,1, ..

since the conditional distribution of time to failure for fixed e is
•:!ponential. With a specified inverted gamma prior distribution
9.M';.;li• 4.2.1.1), the marginal distribution of X, derived in Section

ris given by
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f(X) x 0 0,i, ... (4.2.2.1.2)

This is a negative bincuial distz'bution vith

Mean E(X) -W (4.2.2.1.3)

VaranceX (4.2.2.1.4)

EkX21 _ (E(X))2, + a r )*.2.X.1.W,

Suppose n sample values of X. (zr, ... , x_) are observed.
Then b,- the method of matching mUoenti, we equate

Xi - XT/Q (4.2.2.1.6)
I Ex2)/n -•TT•a)-• (VXT2(•.'17

Xi n (4.2.2.1.7)

The values oft and X which satisfy Fomuilas 4.2.2.1A6 a.
4.2.2.1., are the required estimates, and are denoted by d$
The solution is

A U T

^ -at (4.2.2.1.9)
"-T-

These forsuis vill be uWei in Section 4.3 to ,bazn etimtes

of a and X for eight sets of fie1d data.

j .22. PA)MAE''U E&TM4TIOP PME TMYf 2Lr*

A TM 2& data, ocoitrs vban the obserretd statistic is tbA maple IV~j
8, ubaore '-be "Wwrtm4 number of fil.izes ts a fixed integer K. The condltitll
distrihution fX(l) is YLMM ie.*.

'K
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because of the assimptlon of an ewponential distribution of time to failures.
With a specified inverted pri.or distribution (Formula 4.2.1.1), the

marginal distribution of e, derived in Section 9.2, is given by

"---N ">.

This is an inverted Beta distribution with

xT > 1 (4.2.P.2.23)

KT (X-1(X�-2 , X > 2 (4.2.2.2.4)

Supoe amlevlus fA A A
Suppose n sample values of 8, (e1 , ... , 8n), are observed, each

based on K failures. Then the mtaod of matching moments leads tc the pair
of equations

-n (4.2.2.2-5)

,\2

n - - (-l ) (4.2.2.2.6)

For convevience, we cet m A K

A A
Then the solution (wa,) is given by

A A2
'I-M (4.2.2.2.7)



A AA- •((.2.2.2.8)

4.2.2.3 PARAMETO L~rMhTIOkq FC Y 2b DAT
A

A When the observed sttistic is 0, but the mnnber of failures from which
0 is ccoputed varies from uait to unit, a modificaticn of tlx we•td in
Section 4.2.2.2 can be used to obtain estimtes of a and X.

TApe 2b data is available in the form of n observations, each obsermation
being a pair A ...,n. where the positive integer is the

A
number of failures used to compute^ 01. Nov, for any value of K1, if we
consider the random variable 8 bused on K failures, we obtain fýra equatioms

4.2.2.2.3 and 4.2.2.2.4.

~ I EK ) (4.2.2.3.1)

EK( K.i IDTYsr7 (4.2.2.3.2)

Since the above formulas are valid for any value of KI, the
following procedure for estimating a and )L from the saxle data

[(O:LIK ) seeme reasonable: Solve the equations

n (4.2.2.3.3)

K 2

KM i 2

n (4.2.2.3.4)

A
for o and X. For convenience, we set a, - an d
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A ^A2 (4.2.2-3.-5)

a (4.22.3.6)

Note, that we have obtained point estimates of a and X without haviig
to consider what the form of the mrginal density f(O) is when the Ki's
are different. This was possible because the expectations in Foruulas
4.2.2.3.1 and 4.2.2.3.2 are independent of K.1  However, when goodnesa of

fit is discussed in the next section, it will beccme necessary to specify
a model for the m~wgiml distribution. I

4.2.3 GOODISS OF FIT

4.2.3.1 THE• TEST
X2I

The X2 test was used in this study to test the goodness of fit of the
estimated prior distributions. This section, will outline the steps involved
in taking the XF test. The theory behind the "2 test (ani- also the method
of matching momenta used in Section 1.2.2) can be found in many standard
textbooks on Statistics.

Suppose we have specified a family of probability distributions (e.g.,
negative bincmial of form (4.2.2.1.2)), and have used sample data to estimate
q unknown parameters of the distribution. To test goodness of fit:

1) Select a significance level p (e.g., p - .90, p - .95).

2) Divide the range of the data into cells, so that at least 5 sample
values lie in each of the c cells.

3) Count the mnmber of observations in each cell, and compute the
expected number of observations in each cell under the hypothesis
that the data arose from the distribution with the estimated
parameters.

4) Denoting the observed and expected frequencies in each cell by 0.'
E1 , i-l, ... , c, ute

----------------



2c (o.-E)

~-2  ± th 2
5) Co re X to the p quantile of the distribution

with c-q-1 degrees of freedom (denoted X p,c-q-l).

If

X > X pc-q-1 (4.2.3.1.2)

reject the hypothesized distribution famn.1y (i.e., a bad fit
has been demonstrated).

If

( 2 p0 q.j 2(4.2.3.1.3)-S<X plc-q-l' 42313

then accept (i.e., good fit).

We now return to the case of fitting the inverted gam prior for
different types of marginal distributions. In each case, the Xý test is
taken aginst the marginal, since that is the distribution from which the
sample data arises.

4.2.3.2 THE X2 TEST FOR TYPE 1 DATA

When the observed statistic is the number of failures, X, occurring in
fixed time T, Formula (4.2.2.1.2) is used to compute f(i) a P(X-i) for
i - O12, ... . For a sample of size n, the expectation of X-i is nf(i).
Once the integers in the range of X are divided up into cells, the expected
number of observatione in each cell is easily summed.

2
With c cells, the y test is taken with (c-3) degrees of freedom,

since 2 unknown parameters (a and x) were estimated.

S4.2.3.3 THE X TEST FOR TYP 2a DATA

A
When the observed statistic iA 8 based on a fixed number,, K, of failures,

then the marginal distribution fK(8)is the inverted Beta distribution given

in Formula 4.2?2.2.2. For a sample size of n, the expected number of obser-
vations in a cell with upper and lower end points, U and L, respectively,

A A^
n f fK(8)dO (4.2-3.3.1)

L
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The integral is not available in closed form, but can be cvaluated by
making a transformation to the Beta distribution and using a table of incom-
plete Beta functions. If the tables do not have the appropriat.e parameter
values for a particular case, it is always possible to use the computer tech-
niques of either numerical integration or simulation of the distribution.

Since only 2 unknown parameters are estimated (K is known), the X2 test
is taken with degrees of freedom 3 less than the number of cells.I2
4.2.3.41 THE X TEST FCR TYPE 2b DATA

AA
When the observed data consists of n pairs ,K) d and X are

estimated as in Section 4.2.2.3, a mod~l for the iarginal distribution f(8)

must. be specified in order to take a X tePt. This model must account for

the different K Is on which the values of 8 are based. The most reasonable

model seems to be the mixed population model, in which the marginal density
takes the form

Pfi}) lfKl(a) + ... ()), (4.2.3.4.1)

where t is the number of distinct Ki's, and p is the probability that a
ASrandom observation of 6 is based on Ki failures (note tPi - 1). The

rd(e)'S are, of course, the inverted Beta marginal densities (Formula4 A4.2.2.2.2) for the case of 8 being based on Ki failures. The mixed popula ion

model assigns relative "weights" to the "single population" marginals fK (8),

in accordance with the "prior" probabilities Pi of a sample 8 being based on

K. failures. It is easily verified that f (8) is indeed a density:

f[Ki(O)da - ^ t'i'K (9)dg

" Pi - 1. (4.2•.3.•4.2)

The model contains (t42) unknown parameters which must be estimated
2

before a X test can be taken: ajIpI" ...' pt. The estimation of o and X

has already been discussed. Fo a sasiple of n O's, the p, are estimated by

26
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A number of a's computed from K, failures
p1 - n

for iml,..., t.

To compute the expected number of observations in a X cell with upper
and lower end points U and L, respectively, we note that

U U
AAA A (...141

L L

and the evaluation of the integmals on the right was discussed in Section
4.2.3-3.

2 2With c X cells, the X) t~st is taken with c-t-3 degrees of freedoam,
since t+2 parameters of f (e) are estimated.

4.3 RESULTS AND DEVELOPMENT OF PRIOR DISRIBUTIOIS FCR DATA COL1ECrED

4.3.1 RESULTS OF FITTING THE PRICR DISTRI-JTION WHEN THE FAMILT IS
UN3OI1CFIED

The methods for fitting the prior distribution when the f=mily Is un-
specified were discussed in Section 4.1. Only One of these methods was usd
for fitting actual field data in this study: the Krutchkoff-Ritherford
method. The necessary type of data for using the A-R methLd (pairs (i ,K1))
was ivailable for all 17 sets of data collecttd (See Section 2). Table
4.3.1 summarizes the results of appiyIng the K-R method to the 17 sets of
data (numbered Fis in Section 2). The forwlao at the right san those used in

A
calculations. The mi's are the anbiased estimstis of the monts of g(G)
tht.t the K-H method calls for. The "i 'a exe eatimtes of the contral mments

of g(6) obtained by using the relationships oetween the ceatral ,vmets and
i4!i mwrnts about 0 that hcld for any distrlbutioc. Finmlly, the *sti•tes
ol' the L are use" .o obtuin estimites of I&,P2 a , which a&e ue In

accordance witu criteria in El•drton't book (Reference 2) to identify uniquely
the appropriate Pearsor •Lirve type.

In Table 4,3.1, Pearson cuxve types sre identified for oly D&ta Sets
Nos. 2, 7.1, 12, and 14, wtich are fitted as Types VI, I, 1. and IV respective-
ly. For the 13 other cases, the K-R met4od fails to work, since the esti-
mates of 112 e negative. The failure to fit a pricr lu 13 out of 17 cafes,

is, of couwse, no fault of the data, but is ir2berent in the K-R method. Even

in the four cases In which a prior d4itribution i& identified, the results

27
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are not very credible because of the large and unknown sampling errors in-
herent in the method. To see Just how "bad" the errors are, some simulations
of the K-R method (to be discussed in Section 5) were carried out. The re-
sults indicate that the K-R method gives hopelessly bad reavlts when used on
data of any practical sample size.

A list of the computer program used for the K-R method is given in
Section 10.

4.3.2 RESULTS OF FITTING THE PRIR DISTRIBJTION WHN THE FAMILY IS SPECIFIED

The results of fitting an inverted game prior distribution are shown
in Table 4.3.2.1. The 8 sets of field data used are those given in Table
2.3.2.1. In all 8 sets of data, all units were put on test for time T = 433aj
hours and the number of failures, X, recorded. (None of the other 9 sets ne
data were based on fixed-time testing). Therefore, the method of parametew
estimation used is that given in Section 4.2.2.1 (Type 1 data). Table
4.3.2.1 gives, for each set of data, the sample mean Zxi/n, the sample variance

Ei-/n -Cxi/n) 2, and the inverted gamma parameter estimates and ý, calnu-
lated by Formulas 4.2.2.1.8 a~d 4.2.2.1.9, respectively. The last 4 columns
in the table pertain to the X goodness-oi-fit tests as described in Sections
4.2.3.1 and 4.2.3.2. T~e number, c, of X cells selected is 2 given, along with
the computed value of X , and a desig.ation of whether the X test passes or
fails (with c-3 degrees of freedom) at both significance levels p - .99 and
pm .90.

2 From Table 4.3.2.1, one can see that at the .99 significance level, the

A test is passed in 7 out of d cases. Since each case is for a different
t)ye of equipment, these results indicate a general applicability of the
inverttd gamma prior J.stribution on v for a large range of equipment types.
Fitures 4.3.2.1 through 4.3.2.14 give the empirical and theoretical marginal
distributions and the theoretical inverted gamma prior distributions which
have been fitted.

In Section 10, there is a list of the computer program used to calculate

* , and X from the field data. Included is a list of the raw data for
each of the 8 cases, indicating the grouping into X2 cells. A listing of the
outrut of the program is also included.

An attempt was made to fit a set of field data to a Weibull prior dis-tribution:

g()- e- (4-32.1)

A

Rta Set No. 4, with estimated inverted pa prior parwieters a - 3609.6 and
X P, 2.6-05, was selected. Welbull parameters were selected to yield the
sa mean and variance as the above inverted gamme distribution. The esti-
mates of the Weibull scale and shspe parameters are then, respectively,
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S385.65, -= .7656. In Table 4.3.2.2, the X' cells for Data Set No. 4 are
shown, giving for each cell the observed and the expecte4 number of observ.-
tions under both the inverted goom hypothesis and the Weibull hypothesis.
The expected values for the inverted gumm hypothesis are -omspted as
described in Section 4.2.3.2. For the Weibull case, however, the margi••l
distribution is not available in closed form, ao it had to be simulated.
For T a 4320, a - 385.65, and 0 - .7856, 10,000 random values of X (number of
failures in time T) were drawn in a two-stage process: first, a random 0 is
drawn from the Weibull prior, then a random number of failure times in T giveL
0 is drawn. The relative frequencies in 10,000 trials of the events
IX=O, X-1, ... ) are used to apprcimate the marginal distribution f(x).

The calculated values of X2 are 1.315 and 16.482 for the inverted p
hypothesis and the WtAibll hypothesis, respectively. Since in each case two
unknown parameters are estivated, both X- tests are taken with 4-1-2 a I
degree of freedom. For the inverted gamm case, the x2 test is passed at
significance level p = .90, and even with p as low as it is pansed after .70.
The Weiball hypothesis, however, fails the X2 test even at level p . i9.
(Note that p is the probability of acceptance when the hypothesis is true,
and thus it is easier to pass a test when p is high). Sinue ,be hypothe-
s.ized Weibull prior fails the X2 test so decisively, this result signlficantly
helps to validate the assumption of an inverted Sun pri or.

In this etudy no type 2a data was uncovered although ty a designed test
such data certainly could be gathered. Much of the data Wathered In this f
study was of type 2; in fact, seventeen (17) sets. Thus, the Mixed pargnal:
distribution model had to be app)4ed. This model was discassed in Subsection"
4.2.3-4. In order to apply the x'c test for type 2b it is aecesoiry to have
the number of cells in the X2 test, c, such that c V t+4. In none of the,
seventeen (17) data sets das the sample size n large enougi. so that at l1tst
t+4 cells were available. This is not as severe a lipitatio,ý as it first
might appear. The number of identical equipments n should be gs lawge as
possible for good fits and if n is relAtively large with respect tQ the number
of distinct K's, i.e., t the mixed model can be applied.

4.3.3 PDEMARK ON TI FIi TE171 D PRIM DISRMBTIONS

Dta sets 1, 2, 24, 5, 6, 7, 8 have been shown to be vell described by
an inverted gams, prior distribution. These seven data seto ZEpzset seven
different types of equipment. The question arises as to the degree of appli-
cability of these rezults to other silar equipments. fr example, Data set
4 rtpre sented an oscillooc-. rhere are many different types of oscilloscopes
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by vFri:us manufacturers and one may ask: vwould ttese oscill scopots have
the same prior distribution as that of Data set 4? (and heLce, the same
estimated prior ddst.ribution as we ?'Fve echieved could t, used). The answer
iz striztly speaing, no. However, his is probably speaking too strictly
for practical puzrposes. It is ver likelv that equipe.nts similar to those
used in this report will have pr.r-r -•--t-butions of the sae f (i.e.,
inverted gamma) and henc?, one need only estimate tae parameters and not go
through the sometimes tedious process of fitting the prior distribution itself
I.- may also turn out that even if the prior distributions do differ, they vay
be conbined into one. This is actually not recommended because the ccobina-
tion of two inverted gamma distributions in this -ay leads to A mixed diEtri-
bution which .1 -ot inverted gazma. Cl.eerly, there are two Important areas
for future study

i) The applicability of fitted prior distributI-ons to
simil]- equi.vwnt s.

ii) The feasibility of combining equipments into one
prior distribuýion.
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SECTICtJ 5.0 REQUIREMENTS FOR SUITABIE A PRIORI DATA

S• UMMARY

Objective

The objective of this section is to develop requirements, qualitative
and quantitative, on the type and amount of data suitable for fitting a
prior distribution to 6 = MTBF.

Results

Regarding type of data, it was found that virtually all types of failure
data are suitable if there is enough of it. Even observations on probability
of survival can be used. The "preferred" types are the aforementioned type 1
and type 2a but type 2b can also be used. The results for the amount of data
are summarized below.

Type 1 - number of failures in fixed time T.

n k 30, T large enough to obtain variation in the number of
failures observed on each equipment. For example, T large enough
so that the number of failures are not all the same for all n equipments.

A
Type 2a - observed MTBFJ 0, K identical for all n equipments.

n> 20, K> 10.

A
Type 2b - observed MTBF, •, K not the same for all eguipucents.

The number of identical equipments n should be large enough so
that n a 5t + 20 where t is the number of distinct Ki 's.

48
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Along with the development of methods of fitting prior distributions,
an important goal of this study is to establish minimal data requirements
for using these methods. There are two aspects of the suitability of data to
be considered:

i) The type of data.

ii) The amount of data.

5.1 THE TYPE OF DATA

Failure data can occur in several forms. We divide these into two
classes: attributes and variables data. The attributes situation occurs
when an equipment is operated and its survival or nonsurvival for time T
(usually mission time) is observed. Then usuAl1y the binomial distribution
describes such observations and the parameter probability of survival in the
binomial distribution is the reliability function

R(T) = e T/e, T fixed. (5.1.1)

Now, since the DUBF - 8 is being considered a .%idom variable in this study,
then so is R(T) and either Rolph's method or the K-R method (See Section 4.1)

can be used to fit a prior distribution to R. The change of variable 0 --*A
then leads to a prior distribution on 6. For that matter, since the posterior
distribution is eventually of interest the posterior distribution of 6 can be
obtained by using the above change of variable in the posterior distribution
of R. Another attributes situation arises when test time T is fixed and the

equipment is irmediately repaired when a failure occurs. Then (because of
the exponential assumption) the number of failures occurring in time T is
Poisson and the K-R or Tucker method may be used to fit g(0).

The variables data situation occurs when the actual failure times are
available. These times occur either by ag•reeing to stop testing after either

a fixed number of failures have occurred or after a fixed time has elapsed.
The former case is called a censored test and the latter is called a trun-
cated •est. Often the failure times themselves are not available but the
pair (6 - observed MTBF, K - number of failures) is available. It really
doesn't makter for all members of the class of sufficient statistics for e
(to which V and the failure times belong) result in the sawe posterior his-
tribution for o. Under the exponential assumption the distribution of 9 is
gamma and the K-R method can be used.

Thus, virtually all forms of failure data can be used to fit prior die-
tributions. However, in this study, only the following two types of variables
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data were found to be of practical int0 :'cst•

Type 2 - the observed data is X, tne number of failu• -s
in a fixed time T.

A

Type 2 - the observed data is u, the sample mean.

Both Type 1 and Type 2 data were used in this study, with -ie methods
of fitting priors and the results given in Section 4 of this rc .)rt. The
discussion of quantitative data requirements in the next secticon is re-
stricted to just these two types of data.

5.2 THE AMOUNT OF DATA

In order to establish quantitative requirements for fittir.. a prior
distribution, the following information is necessary:

1) The type of data used.

2) The method used to fit the prior distribution.

3) The criteria established to define "suitable" results for each
method and type of data.

Because of the dependence of the data requirements on the above, each of
the cases of Section 4 must be analyzed separately. For each case (i.e.,
method and data type), a sensitivity analysis will be carried out, and data
requirements will be set by applying suitability criteria to the results ox
the analysis.

5.2.1 TBE AMOUNT OF DATA-FAMILY UNSPECIFIED

The only method used in this study for fitting the prior cistribution
when the family is unspecified is the Krutchkoff-Rutherford met~od. The
K-R methcd was used on field data in this study, and the results are sum-
marized in Section 4.3.1. The purpose of this section is to derive suitable
quantitative data requirements for applying the K-R method.

A The type of data necessary for using the K-R method is observations
(B ,K ) on n units. Since the data is .f Type 2, it is necessary to set
mi iUal quantitative requirements for the following:

1) the unit sample size, n.

2) the number of failures, Ki, i-l, ... , n.

For the purpose of determining tiese L;ta requirements, tL: following
computer simulation was carried out:
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c.. prior distribuion ý(C; waE assumed Lo be inverted gamma with param-
, -. P-rom. Secin 9.i, it. rar. be. seen that .he condition

S> ' gjartntecs iaL Vhe first four rimoments of g(M) are finite. Forty-two
patirs ',n,K) were selected, by combining 6 values of n (n = i,20,30,5u,iOO,
20J) wdrh each of 7 valuer of K(K = 5,10,20,30,50,iO0,200). For each (n,K)
pair, n random values of 6, e ch based on K failures, were drawn. (The
method of' drnwing the random ý's i6 explained explicity in the next section.)
Then with the n 6's, the first four moments of g(b) were estimated as ex-
p2lained in Section 4.3.1, and the F-R method was applied. Tne criterion for
"suitable" data was (roughly) tht an (n,K) combination is suitable .!' the
corresponding simulated date, leads to a Pearson curve reasonably 'close" to
the original _..verted grijmna prior distribution g(0). One would expect the
estimated prior distribution to become "closer" to the true prior as both n
and K increase.

However, the result of the simulation was that, in all 42 cases, the
K-1R method was not even usable, in all cases, the estimate of the fourth

Scentral moment was negative, thus raking the K-R method impossible to use
(for in all distributions, central moments of even order arc positive).

SSice the 42 cases ..re well representative of the practical range of
a•,aiable data, and the specific inverted gasmia prior selected is very

"typical," the results lead to the following conclusion: No data require-
mk.nt:ý can be set for the K-R method, since the method generally fails for
practical ranges of data.

5..2 2>1 *..... ..' .Cl, - U.AJLY .... Lr..L AJ

In this study, two cases of fitting a prior with the family specified
were considered:

A
1) Inverted gamma prior, observec. random variable is b. In this case,

minimui. data requirements must be set for (i) the sample size, n,
and (ii) the number of failures LKii, i-1, ... , n.

2) Inverted gam:a prior, observed random variable is X, the number of
failures in time T. In this case, a minimum data requirement must
be set only for the sample size n. (The number of failures in
this case is the random variable, not a parameter that can be con-
trolle4 in a test.)

A
5.2.2.1 DATA REqUIRFKNTS WHEN THE OBSERVED STATISTIC IS 7

The Reneral framework is that there is an inverted gamma prior g(e)on
thun mean t of an exponential time-to-failure distribution. Suppose that for
each of n equipmenss, K failitre timespare observed and a b is computed. One
then fitt g( ) using the n values of 6. (This is the Type 2a data discussed
in Section 4.) To test the sensitivity of the fit, one car, try fitting the
sample data to alternate priors, and can repeat the test for different sets
of 'n,K). If g(b) is the true prior distribution, then intuitively, as n
and K are increased, the test should accept g(6) as the prior, and reject
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the alternate distributions, with increasing frequency. In order to get
concrete results, i.e., specific values of n and K for which discrimination
between the true and alternate priors is "good," it was necessary to conduct
simulations for specific cases.

The simulation program reads in the parameters a and X of g(e), along
with the parameters of the alternate distributions which were selected to be
the Wcibull and lognormal distributions with the same mean and variance as
the inverted gamma. The program also reads in the desired values of n and K
(n = 10,20,30,50,100,200; K - 10,20,30,40). For each of the 24 pairs (n,K),
the following steps are carried out:

1) Draw n random observations from g(e).

2) For each of the n O's, draw K random failure times x1l, ... , XK from
f(xle) and compute

x, /K.

A 2
3) Using the n O's, perform X2 tests to accept or reject each of the

3 ca didate priors, at both the .90 and .95 confidence levels
(6 X tests in all).

The whole experiment is repeated 400 time&, and the final oitput is a table
that for each n Rnd each K, Prints out the number of the 400 that resulted in
acceptance, for each of the 6 x2 tests.

In order to take the simulated &2 tests, it was necessary to compute the
percentage points of the marginal distributions corresponding to the inverted
garma , lognormal, and Weibul.l prior distributions. Since all three marginals
are analytisally intractable, an auxiliary simulation was written to do the
following:

1) 10,000 random samples axe drawn from g(e).

2) From each of these, k random Aailure times from an exponential
with mean 0 are drawn, and a 6 is computed.

3) The 10,000 A&S are ordered.

4) The 1 0 0 th, 2 0 0 th, ... , 9900th O's are p~rinted out in a deck to be
used in the main program as an approximate "look-up" table of the
99 percentage points of fK(G).

2
The X tests are carried out in the main program as follows:

1) When the n's are read into the pgogram, corresponding Cn 's,
denoting the desired number of X" cells, and corresponding .90
and .95 level X2 values (Cn-1 degrees of freedom), are also read in.

n!
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I

2) For a given (n,K), class marks are belected from the took-up
table so that the expected number of observations of Y in eachcell is n/cn under the hypothesis that the marginal distribution

( A
fK(%) is the one corresponding to the inverted gamma prior g(e). 4

3) Using the look-up tables corresponding to the Kth-order marginals
when the prior is Weibull and lognormal, the expected number of
observations in each cell under the Weibull and lognormal hypotheses
are found.

4) The number of values of 0 falling into each of the cells aretallied and C2 i

Cn (Oi-Ei 2
X 2 Wl 7

is computed for all 3 cases, where 0 is the observed number
of ý•'s in the ith cell, and Ei the expectA:d number under

a given hypothesig. In each case, X2 is compared to both
the .90 and .95 X" values, and the hypothesis is rejected
if X2 is too large.

2For one of the 400 iterations of the pro&ýam, a complete output of the
A tests was printed out for each of the 24 (n,K) combinations. Table
5.2.2.1.1 shows the output for the case n = 100, K = 40. (The inverted
ovmm parameters are c - 1500, , m 4). Note that in this particular case
the V2 test is passed at both levels under the h)potheses that the prior
is inverted gamma or lognormgr&, &ad is failed at both levels under the
Weibull hypothesis.

Due to the fact that the simulation of the percentage points of the
marginal distributions fK(0 requires a large amount of computer time, the

st~udy was restricted to one inverted gum prior with parwwters a - 1500,
kA * 4. The alternate distributions consid.red were the lognor.J with
parameters • - 500, a a 353.55, and the Weibull with parameters o - WX007,
Sa 1.4355. All three distributions have the same mea and standard devia-
tion, n~amely, .i 50•0, 0 a 353.55. Plots of the three density functions

are 3hown in F!'.re 5.2.2.1.2.

SThe output of the simwlation is shown in Tables 5.2.2.1.3.a and A

5.2.2.i.3.b. For each pair (n,K), 4W0 silAstions were run, taking 2 X
tests (.90 and .95 level) for each of the above 3 priors. The number of
tests passed out of 400 are given for the .90 level tests in Table
5.2.2.1.3.a and for the .95 level tests in Table 5.2.2.1.3.b.

Referring to the above tables, the following rationale for selecting
suitable (n,K) pnirs id given:

5 . ... 3...i...j. - .. . .. . . ... .... . .. . . -- . --
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TABIZ 5.2.2.1.1 EXPECTrED AND OBSERVED 'VALUES FOR X2 TESTS
UNDFR E•EAH OF 3 iIT-?PFiSIIZD PRIORS

n = i00
K= 40

1Expected No. Expected No. Expected Nr

Cell ho. Upper Class Observqd for Inverted for Log for Weibul3
Mark for Cell No. of &'s GAmm Prior Norwal Prior Prior

1 215.91 15 10 17.634 23.686

2 260.69 4 10 8.488 6.150

3 304.44 10 i0 7.791 6.169

4 354.52 16 10 8.163 5.985

5 404.79 9 10 7.691 6.147

6 469.57 10 10 9.1.45 7.444

7 553.02 12 10 8.804 8.065

s 669.81 7 10 9,425 9.346

"9 884.06 7 I0 10.395 12427

Io 10 10 12,465 14.581

IInverted Gu•a Log Norml Wseibul

2 I
A 12.000 5 4.593. 592

I (sve" 1.4.684 U4.6e4 14.684

j 5. level 16.919 16.919 16.919

II
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If N X tests are run at. significance level p, then the distribution
of the number of tests passed, under the null hypothesis H that the sLnples

0

come from Phe distributior being fitted, is binomial with mean u Np and
variance a - NPUl-p).

In case a. N - 400, p = .90., so that " - 360, C 36

In case b, N - 400, p - .95, so that - 380, c 2" 19.

In each case, letting the random variable X be the number of tests passed,
the distribution of (X-u)/o is approximately distributed N(0,1)(unit normal).
If we solve the equations

X . L1 x 95"U
-1.28 and -1.64

for x and x 9 5 , then

Pr(x a x b jHo) = .90 and Pr(x a x. 95 Ho) .95.

Referring to Tables 5. 2 . 2 .1.3.a and 5.2.2.1.3.b, the following criterion
seems reasonable: "Suitable" pairs (n,K) for fitting the prior are those
for which the number of "passes" exceed x (o: x 9 for the test of the

.90 .95'
inverted gamma pr4.or (the true prior) and are less than x 9 0 (or x 9 5 ) for
the tests of the lognormal and Weibull priors (the false hypotheses). The
computed values )f x and x 95 (rounded to the nearest integer) are:

__ __ .90 .95
Case a (.90 level) 352 350

Case b (.95 level) 374 373

Looking at Table 5. 2 . 2 .l.3.a,, one can note the following:

1) Exriuding the case where n = 10 (all K), and the two cases
n -- 20, K = 5 and n = 20, K a 10, the number of passes
fcr the lognormal and Weibull tests .os always less than
bth X90 and x 9 5 (352 and 350), whereas, for the in-

Narted gamma test, only 4 cases pass less than 352 times,
'.nd only 1 less than 350 times.

2) For each fixed K, the number of times the lognormal and
Weibull tests pass monotonically decreases as n increases
(with one exception). The same holds true (with 2 exceptions)
for fixed n $ 10 and increasing K.

S56
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TABLE 5.2.2.1.3.a. NUMBER OF Y( MTS PASSED (OUT OF 400)
UNDER EACH OF 3 HYPOTHESIZED PRIORS, TAKME AT .90 IEVEL

10 20 30 50 100 200

invcrted Gamma 357 375 364 351 367 360

f 5 Lognormal 357 359 342 311 308 268

Weibull 357 320 272 175 84 14

Inverted Gamma' 364 365 364 345 357 351

10 Lognormal 364 351 347 302 251 210

Weibull 364 299 Z33 131 31 0

Inverted Gamma 356 359 365 358 359 359

20 Lognormal 356 330 319 313 239 158

""Weibull 356 251 172 86 9 0

Inverted Gamma 356 367 359 365 367 349

I 40 Lognormal 356 318 298 261 189 85

Weibull 356 244 161 75 7 0
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An investigation of Table 5.2.2.1.3.b yields essentially the same re-
sults as above.

As can be seen in the tables, the discrimination between the true and
alternate priors increases rather dramatl ally as n and K increase. It can
be seen why the Weibull distribution fares "worse" than the lognormal by
looking at the plot of the three densities (Figure 5.2.2.1.2). Obviously,
the less the alternate prior "looks like" the true prior, the better the
discrimination between the two.

On the basis of the above results, the following conservative data
requirements are set for fitting an invrted a prior when the observed

statistic is 9: n > 20 and K > 10. We must keep in mind, of course, that
the requirements are based on experience with one particular prior (inverted
g with a - 1500, X = 4) and two particular alternate priors. It would
be of interest to repeat the simulation for other cases. It is felt, however,
that the case considered is fairly representative and that the results ob-
tained from it are generally applicable.

The only "Problem" with the analysis described qbove is that it is
limited to cases where K is fixed in each sample of Vis (type 2a data).
When the simulations were first undertaken, it was thought :at if a pair

(n,K) was suitable for a prior fit, then data of the form t(•,Ki),i=l, _
all K a K) would also be suitable. This is not the case, however, since
when he K I's are different (Type 2b data), one must use the mixed population
model for the marginal distribution. As explained in Section 4.3.2, this
leads, in actual practice, to a problem concerning the degrees of freedom
for the X2 test, due to n being too small and/or having too much "variety"
in the K 's. In the above simulation, this problem was avoided by having
K's for iach sample. The basic quantitative data requirement when the K
are different is that derived in Section 4.3.2: c a t + 4, where c is thep
number of X cells, and t is the number of distinct Ki's. Since we require
-_ A c, we can rewrite the requirement. as t + 4 s n.

This requirement was not achieved in this report as can be seen in

Section 4.3.2. Two remarks are in order. First, no matter how many distinct
Ki's there are (even if t-n) if the Ki are all large, i.e., greater than
or equal to 20, then the prior distribution can be fitted directly to the
observed l's. Secondly, when n is relatively large with respect to t the
mixed model can be fitted. There will be cases for large n when t is rela-
tively mall.

5.2.2.2 DATA REQUIREMENTS WHEN THE OBSERVED STATISTIC IS THE NUMELR OF

FAILURES IN TINE T

Sections 4.2.2.1 and 4.2.3.2 discuss the method, and Section 4.3.2 the
results, of fitting an inverted gum prior distribution when the observed
statistic is the number of failures X in a fixed time T. The purpose of
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2
TABLE 5.2.2.1.3.'b. NUMBER OF X TESTS PASSED (OUT OF 400)
UNDER EACH OF 3 HYPOTHE-SIZED PRIORS, TAKEN AT .95 LEVEL.

K 10 20 30 50 100 200

Inverted Gamma 394 390 382 379 381 376

Lognormal 394 377 3"It 343 348 299

Weibull 394 349 318 233 124 22

Inverted Gamma 393 385 381 381 376 377

10 Lognormal 381 373 372 343 306 259

Weibull 393 335 286 186 53 1

Inverted Gamma 392 379 380 378 382 379

20 Lognormal 377 364 357 343 290 203

Weibull 392 286 229 127 17 0

Inverted Gamma 388 380 376 383 387 364

40 Lognormal 388 360 338 320 250 130

Weibu.11 376 284 217 114 17 0
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this section is to find the miniimu unit sample size n required to get a
"suitable" prior fit. The analysis to determine the minimum n was based on
the sensitivity study described below, which is analogous to the one de-
scribed in the previous section. The restriction on T is that it be large
enough so that the number of failuves is variable enough to take the (2 test.

The inverted p prior parameters selected for the simulation were
au 1400, a M 3. As in Section 5.2.2.1, two alternate priors were selected
having the same mean and variance as the above prior: a Weibull distribution
with parameters a r 2000, 5 - 1 and a lognormal distribution with parameters

2M-.)0, o W000. The fixed time T was chosen to be T - 4000 hours. Six
values for the sample size n were studied: n a 10,20,30,50,100,200. For
each n, n random values of X, 1X, ... xnj were drawn, and X2 tests taken

spinet the (true) inverted m prior and the alternate hypothesized
priors. Each random value of X was drawn by taking a random value of 8
from the Inverted Vius prior g(8). and then taking random failure times
t l-1t2- -.. from the exponential distribution with mean 6. The value of X

K
is then taken to be the largest value of K for which F, ti < T.

1.1

Table 5.2.2.2.1 shows the results of one run of the sim.lation for
the cas n - 200. The first column of the upper table lists the value, x,
that the random variable X can take on, and the second column gives the ob-
"served maber of times (out of 200) that the events X-x occurred. The
last 3 columns give the expected number of times (out of 200) of the oceur-
rence of the events X-x under the three hypothesized prior distributions.
These expectations are easy to compute for the case of the inverted gw=
prior, since the marginal distribution of X can be computed explicitly by
Formula 4.2.2.1.2. For the lognormal and Weibull cases, however, the mar-
ginal distributions had to be approximated by simulation. In both cases,
10,000 random values of X were drawn (by taking random O's from g(9) and
obtaining a random value of X as described in the previous paragraph). Then
the relative frequencies (out of 10,000) of the events X - 0,1,2,...., were
used to approximate the marginal f(x).

2
In the lower table of Table 5.2.2.2.1, the results of the X tests are

given. Six degees of freedom were used because the data in the upper table
vri divided into 7 %x cells. For this particular case, the inverted gana
pior passes the iý test at both the .90 and .95 level, while the other twohypothesized priors fail both tests.

As in Section 5.2.2.1, the above simlation was repeated 400 times for
each n. Table 5.2.2;2.2 gives the number of times out of 400 that each test
was passed. The criterion for "suitable" values of n is the same as in
Section 5.2.2.1, leading to the sm critical values x.90 and x 9 5 as given

In that section. As can be seen in the table,,when n is a 30, the number
of times the Inverted Vnim prior passes the ;? test exceeds the critical
value 30(373) at the .9D(95) level, whereas, the number of passes for the
lopmorml and Weibull priors fall short of the critical value.
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Hence, in the case of fitting a prior specified as inverted gias when
the observed data is the number of failur'es in time T, the following conser-
vative data requirement is set: the sample size n must be at least 30.

61
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TABLE 5.2.2.2.1 EXPECTED AND OBSERVED VALUES FOR X TESTS
UNDER EACH OF 3 HYPOTHESIZED FRIORS (,n=200)

n =200

Expected No. Expected No. Expected No.
value x Observed No. for Inverted for iog Normal for Weibull

of I ol eitme - Prior Prior Prior

0 33 25.00 25.16 28.76

1 43 37.50 35.06 34.20

2 41 37.50 32.08 26.80

3 29 31.25 24.92 20.68

4 Z 23. U 19.60 14.52

316 16.l41 15.80 10.20

6 8 10.94 11.34 7.70

7 U 7.03 8.2) 7.12

Over 7 6 10.94 22.o6 44.62

Inverted GN Lognormal Weibull

Cops Y' 8.964 4,..196 20.034

.90 Lovel 10.645 10.645 10.645

.95 UW 12.592 12.592 12.592

__ _ _ _ ____
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TABLE 5.2.2.2.2 MMR OF TESTS (OUT oF 4Wo)
UNMR EACH OF 3 !YPO0TESIUED PRIORS

Level i0 0 3J 0 00 200

.90 Inverted Gem&a 352 W42 353 355 353 367

Level Lcgnorml 352 332 328 260 183 57

Weibull 373 332 263 46 31 0

*.95 Inverted Gwi 390 380 383 373 376 .387

Level Logpozim 373 364 352 307 28 89

Woibuil 373 364 304 80 16 0
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sECTION 6.0 ANALYSIS FCR DATA COMBINATION

In fitting prior distributions in this study different classes of
identical equipments were available. In fact, seventeen data sets were
used. It turns out that some care must be exercised in defining what is
meant by a prior distribution on MrBFi, say g(6). All p.d.f.'s must exhibit
some form of homogeneity. That is, limitations are placed on the "reasons"
why the variable of interest varies. These reasons are commonly called
assigmblu causes of variation. As a beginning, g(b) has been restricted
4L fol]'ev"--

The random MrBF's (8's) belonging to a particular g(e)
must be O's on a given type equipment built to the same
design specifications by a particular manufacturer.

This is somewhat restrictive because it apparently places equipment
of the saw design but built by different manufacturers in different g(9)'s.
It also places similar equipment, say computers, but witn different designs,
e.g., different memory size, in different g(e)'s. One might ask, couldn't
some of this data, say different computer types, be combined into one
prior distribution? Tha answer is yes, but with this qualification: every
assignable cause of variation, e.g., different manufacturers, is a piece of
prior information and, if possible, chould be exploited. Combining data
into one prior which have assignable and identifiable causes for having

different MTBF's, in general, increases the variation in the prior distribu-
tion. On the other hand, fitting a large number of lorior distributions is
a costly process and it is worthwhile to be able to "relate" prior distribu-
tions on similar equipments even though they, the prior distributions, are
not combined. For example, two computers of similar destgn, say different
memory sizes, might ha,,e prior distributions which are relatable, though it
might not be wise to combine them. Thus, when the prior distribution of
the one is fitted, the prior distribution of the other is known. For
example, let these computers be called cI, c2 with prior distributions gl(r)
and g2 (9). It might turn out that gl(O) and g2 (6) belong to the same family,

e.g., inverted gm, aud hence may be related by some transformation. If
this transformation is known then having fitted g,(b)(g2(b)),P(2)(g 1 (t)) is
known. In Section 9-.3 of the Appendix, a particularly simple transformation
was considered, namely,

02 K0 1  K > O.

Then, ifV 1 is inverted g i with parameters (i 1 , X b2 is inverted gamma

Vitb aLrameters ('2 m m1K, X 2 1 ). Thus, knowing (or,, Xl) end the constant

K, the pariweters of the se-ond prior distribution are known.
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I
One particularly good idea for estimating K, which could not be verified

because of lack of data on two similar equipments, is that K might be well
represented by

K = p P

where eP is the predicted M1BF on the ith equipment. This idea should be

investigated in the next study phase.
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SECTION 7.0 ROBUSTNESS ANALYSIS

-Y

Objective

The ob ective of this section was to investigate the effects of errors
in estimating the ecale and shape parameters of inverted gumun prior distri-
bution on the posterior inverted gamm distribution. The effects were
measured in terms of cbanges in the mean, 5 th, loth, 90 and 9 5th percentiles
of the posterior inverted go= distribution. For measuring effects of
errars in estimating the scale parameter a, a shape parameter •,-3 was
assmed. For measuring effects of errors in estimating the shape parameter
sce parameter gP200 was assumed. The posterior distribution depends onA
and three values were chosen: 8-50. 100T, 2es. These choices were reason-

able in terms of the value of uh arsmrei K values chosen were 5,10,20,30.

Resulto

The effect of errors in estimating the scale parameter of the prior
inverted distribution were practically neglgible on the selected
percentileA of the posterior inverted gam distribution for all three

values of e and for K a .F0. The effects were mere noticeable for K rIO and
quite pronounced for K-5. This ties in with the results of Section 5.0
regarding date requiremnts although arrived at in a different way.

S~The effects of errors in estimating the shape psrameter X in the prior
•inverted pmo distributio were,, as in the above case, prncticsl-l, negligi -

ble on the selected percentiles for K A 2D. For K a 5,10 the effects were

quite pmounced. This result ..ui.n tins in with the results of Section 5.0.

VCV
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It had originally been intended to select several Bayes reliability
demonstration test methods and investigate their robustness with respect to
errors in estimating the parameters and family of the prior distribution.
Ho'-ever, only two methods (Bibliography #2, #59) are available at this time
and neither has yet gained anything near acceptance in the field of reliability
testing. For these reasons, it was decided to abandon this spproach and take
another tack which, hopefully, would be of mcre use to the reader.

The ultimate use of the prior distribution i-c to suwplewent it with ob-
served data so that a posterior distribution may be calcalated. In short,
Bayes reliability tests will use the posterior diat-ibW-ion in one form or
another. Thus, it was decided to investigate the sensitivity of posterior
distribution to errors in estimating the parameters of the prior inverted
gana distribution; tnere was not time to investi gate differences in families.

1r (.g, \) are the scale and shape parameters of a prior inverted Ss
dist.ribution, then the posterior distribution has peraeters (a * K, A * K)
with mean

! A) _ (7.1)

X+K-l

..ow, if (a,%) were estimated incorrectly as say, a'= a 4 Q *, -4 A then

0'" 4 40 U J +TK- (7.2)

and this Xould be the posterior mean used. However, for large K both E(6I1)
and E'(tIA) approach the same limit, i.e., 9, and do not differ by much. The
percentilesi of the posterior di tribution are not available in closed form
but can easily be obtained by compater. Figures 7.1 through 7.12 present
the behavior of the posterior inverted Swu distribution (in terms of its
mean, 5th, 10th, 9Dtb and 95th percentiles) for a fixed value of X - 3 as a
function of the scale parameter a. The X - 3 was selected because it re*e-
sented a reasonable mapitude for the whape parameter. Since the posterior

A A
distribution depends on 8, three f'a were seleced for each K: 50, 100, 200.
Tae K's selected were 5, 10, 20, 30. Figure 7.1 ohows that the mean mid
percentiles of the posterior distributi(oi are rather insensitive to a (i.e.,
the lines are almost vertieal) for .K -33, 9 a 2M. Mich the same is true
for all K 30, i.e., for Figures 7.1, 7.2, 7,3- When K - 10 (Fligures 7.7,
7.8, 7.9) the vean and pe~centiles become quite sensitive to differences in u.
Note that the effects of V" are in the translation of the mean and percentiles
along the ( axis and not in the slope of the lines. Thus, for A = theIerrors of eotimaling a ir.-orrectly do not appear serious until K gets mall.
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Comparing Figures 7.1 through 7.12 with Figure 7.0 shows that though the
prior distribution is highly sensitive to differences in o (for X = 3) the
posterior distributions do not exhibit this c"aracteristic. The posterior
distributions are, of course, sensitive to differences in a

K' is always known and usually large compared to • so that errors in esti-
mating a &;re not too serious.

A ttudy similar to the previous discussion was done for the same
S" 50, 100, 200, K - 5,1 0, 20, 30 but this time a = 200 was held fixed and
Xvaried. Figure 7.13 shows the prior distribution mean and percentiles.
Since the shape param,!ter of the posterior distribution (Figures 7.14 through
7.25) is (X + K), it is no surpxrise that the sensitivity of the mean and per-
centiles to errors in X is greater for smaller K. For large K, (X + K) is

1 dominated by K for the values of X expected to occur in reliability. PutVi j another way, suppose \ 5 in the prior distribution but that an 605 error
waa made auid X' = 8 was estimated. For K = 30 then the true shape parameter

i I in the posterior distribution would be (% + 30) = 35 and the one estimated
wouli be (8 + 30) = 38 a relatively small percentage error compared to the

" I orlanal error.

K~.1

IX
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SECTION 8.0 CowCuiSIowS AND RECOQ4ENTIm O

8.1 CONCwSIONS

As a result of this study certain conc.uslons appear inescapable. We
list the important ones now. First, fitting prior distributions to 6 - 1TBF
is entirely feasible. The techniques developed in this report indicate that
the mechanics of the fitting is a relatively inexpensive process. Secondly,
the amount of data available, i.e.., in existence today, which leads to good
rrior distribution fits is somewhat limited. Thus, the costs of fitting
prio.- distributions, while not exorbitant, will be primarily incurred in
acquiring, either by intensive search or by designed test, suitable data.
Thirdly., the inverted Summ prior distribution.. which is nathema~tically
quite tractable, also appears to graduate data quite nicely since in the

eight (8) situations where a fit could be obtained, seven of them were
well described by an inverted Smma ,pior distribution.

In sury, the development of Bayes reliability demonstration tests
appears to be quite feasible from the standpoint that the prior distribution
needed can be fitted.

6.2 ECCOMNDATIONS

The following rezommendations are intimately connected with the conclu-
sions of this report. First, it is recamiended that additional prior distri-
butions be fitted. That is, prior distributions should be fitted to equipment
different than the type studied in this report. This will further test the
suitability of the inverted gm prior distribution. Secondly, in view of
the costs of fitting prior distribution, two areas should be studied.

i) Bayes methods of reliability demonstration which do not require
a prior distribution should be studied. Such a method is
empirical Bayes. It is doubtful this area will be entirely
fruitful but is certainly worth a look.

ii) Methods of relating prior distributions on different, but
perhaps similar, equipments so that prior distributions may
be derived from one another instead of fitting new prior
distributions to each one. An example would be relating two
equipments by some fixed ratio of their predicted ?fBF'a.
Finally, the receptiveness of Government and Industry to
Bayes Demonstration tests should be studied for even if
the methods are developed and feasible the Bayes plans will
not return much cn itvcstmenv.. if they are not used.

In sunmary then, it is reconded that the next logical steps be taken
in the development of Bayes reliability demonstration tests.
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SECTION 9.0 APPENDIX

9.1 THE INWERMED GUM PRICR DISTRIBUTION

At the tim of this writing (late 1969) it seems impossible to exaggerate
the importance of the inverted Sm distribution in reliability estimation/
demonstration; particularly, when the measure of reliability is 8 - MTBF.
The reasons for this importance follow.

First, the inverted p&ia distribution is a two parameter distribution
(it can be made three parameter) and is very flexible. That is, the inverted
pm distribution can be used to graduate a wealth of empirical data. As
evidence of this, we offer the fact that seven of the eight data sets analyzed
resulted in good inverted gamma fits.

Secondly, and, perhaps more importantly, the marginal distribution of
X (X being either time to failure or number of failures per fixed time T) is
also available in closed form. This u~kes problems of fitting the prior
distribution much more tractable.

Finally, the inverted pm distribution is the natural conjugate for the
Poisson process (i.e., for the exponential and Poisson conditional distribu-
tions). This means that the posterior distribution is of the same form as the
prior distribution (inverted mama) and hence, the posterior distribution is
available in closed form. This makes computations for demonstration tests
and other analyses much more tractable.

The guas distribution in the random variable X is given by

g(x) X e Of (9.1.-)*S~AAx~ > 0.

The change of variable a = l/x leads to

e~)-r (9.1.2)

Thus, the pm and inver~ted pm are related by a reciprocal transfor-
mation. This is particularly convenient since for the Poisson process the
X(BF Is the reciprocal of the failure rate. Hence, a pm prior distribution
on the failure rate implies an inverted Sm prior distribution on the MTBF
and conversely.

() is notation for thke ema function: M) f Y Y dy.

0
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The characteristic functirnn of the inw!:rea gppw is useless fc- rinding
the moments but they my be found directly. The Kth omoent is given by

E(OK) JeKg(e) de

0

r-LT f 6 ) e'/- a( 19.-1.3)
0

The change of variable y - q/6 leads to

K / -1 (9.1.-)
E(e y e ___

For (X-K) > 0 the integral in (9.1.1) cmnerges and bemuse of the
recurrence i-v)v r(v+l)

E(eK) -( 
.

For (l-K) 1 0, i.e.., X 'K, the integral inr (9.1.1) Is Infinite and EOK)
does not exist.

If ) a the lareest Integer saller than ), 'e.g., [i.3J = i, E1.03 u 3)
then all moents up to and including [X] eWist and no aomnts beyod an ]
exist. Using (9.1.5):

2 C

4Ele)( .. G.. X > 2!.11

EXAMPIE: Suppose, given an inverted Ve distributtion pith g s 100 a. * 2.5.
T = 2 and only the first tvo Onts exist. T•ey aem

E(6) - M 66.7

E(e) 10 =0 13,333.3.
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It Is of no consequence to this study that the moments do not all exist.
Other than this the inverted pnm is well-behaved and even if the mean does
not exist, the mode, median and all quantiles do. The mode is given by

Mode- • (9.1.7)

9.2 THE MARGNAL DISTBUTIONS

in this section the marginal distributions (for an inverted ama prior
distribution) will be derived for two conditional distributions.

i) The Poisson distribution when number of failures occurring
in fixed time T Is the observed random variable.

Ii) The Sapm distribution when the time to failure is expo!ential
and hence, the observed randow variable is sample XE? if.

For cases i) above

f(x) f(XIe) (6 ) de

X! e- do(*I

00 (j
X x 7 -(?.cd/o

Ira-) iT J AX+l "

With tb*e ch"n of variable Z. (T'@)/e

f(z) Z 7r)+j- 4Z.)~+

The integsml term is r(x.x) so that

r~x) * x 1 TX ( (92.1.)

FOOV ~a-r kaI



Setting p a 9 nd q T it is noted that q 1and
Tga

f(x) - -T -- qo,-1,

is the well-known negative binomial distribution with

Mean - E(x) = XT
Wi

Variance - a 2 .X ••

It should be noted that if we bad started with a g distribution on
failure rate and a Poisson conditional with mean: failure rate times T
instead of T/O the sam negative bincmal distribution as (9.2.1) would
have resulted.

In case ii) above, it is easy to show that if time to failure is
exponential, then the conditional distribution of the ample M 9,F
given the 6, is game,, i.e.,

A K AK -KO

f (s 6)(0) eT

Here Is the observedinamber of failu~res in4 B is the true but unknown
MTN. ce the vargin.l distribution of is

* tX$ .,f ,o!e) 8(B)d,9

e. do.

A i0

flKnt 4/ý\K (9.2.2)

which is the not so well-known £zwerted Beta distribution.

Tn any event
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A

Ae 2
E()- ) X > 2.

9.3 TWhS KTILONS ON THE INVERTED GAMMA DISTRIBJTION

In Sectiun 6.0 (Data Combination) a certain method of relating prior
distribations on "different" equipments was discussed. The idea depends
on a property of the inverted geam distribution (many other distributions
have this saw property) which will be shokin here:

If

g( -6)e"l (9.3.1)

i.e., if 0 Is inverted g with scale parameter a and shape parameter X
then the rand= variable y - 8e, 0 0 < c4 is again inverted gam with

scale pramter (aB) and shape parameter X. That is,

M(y)- Ye/e (9.3.2)

This result follows by substituting 6 - Y in (9.3.1) and multiplying by
the dlifferential element dO - dy/8.

A change of the form e - - c, 0 < c <0, has the effect of introducing

a guarantee tine 9c and changing the scale parameter to ag.

A change of the form 0 a y mans that y is not of the inverted gam
ifamlyl.

9.4 xIrnI7IABIrITy OF THE PRIOR DISTRIUTIOXK

The centrul problem In estimating the prior distribution of )KMBF, say
* S(0), is that random sampbs (to .onstruct an estimate of g(d)) are not

available fArom g(e). Thus, the marginal distribution

f(x)f f(x)g()d ( 9  1)

must be used to estimate g(g). Suppose now that the equation
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implies that gl(O) - g2 (G). In this situation f(x) is called ident~ifible

with respect to f(xI •). Identifiability is E. crucial property for this study,

since if (9.4.2) could hold and gl(O) 0 g2(6), then two different prior dis-

tributions could lead to the sane murginal distribution and since the mrgLml
distribution is used to nake inferences about g(O) it would be iumossible to
tell which (in the case of non identifiability) g(G) obtained.

We will show the identifiability of the iarginal distribat~io f(X) with
respect to three conditional densities (the Poisson, exponential, and W ).

- i) £(xjI) - SeT/(/) This is the case where the amberofftibres
X!

occurring in fixed time T is the observed random variable aL4 the
operating process is the Poisson process.

-x/Gii) f (x~e 1 /6 e .Here the random variable X is times to failure.
AKfi

A (K/6
iii) f (rdN) e/) This is the s~a= distribution or

sample MTBF when times tc fail~rc are expoiwatial.

A resilt of Teicher (Reference 7) is used to sbow that f(x) is identifi-
able w r. , i) above, i.e., that different prior disti'ibtions cannot lead to
the sare mrginal distribution. The result is that a fmily of densities
which is additively closed (a.c.) is identifiable. Additivly closed wans

f(xla) * f(xla) - f(xla. ) (9.. 3)

The * denotes convolution. Since it is easy to show that the am of two
Fisson --,ariates is again a Poisson variate with parmieter the sun of the
two parameters f(x) is identifiable in case i).

For case Ii), we note that

f (x) aJA eh e (~d
0
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Making the change of variable 1 = i/8

00f(x) f%_xgkd 945

TLab, f(x) divided by X is the Laplace transform of g(k). If g(k) is a class
of continuous densities (e.g., the gamma family) then g(G)is a continuous
class (e.g., inverted gamma) and by the uniqueness theorem for Laplace
transforms f(x) is identifiable.

Finally, for case iii) we again use a result of Teicher (Reference 7).
That is, for fixed K iii) is a scale parameter family generated by fkxln,l)
and a unima.eness theorem for Fourier transforms gives the desired result.

9.5 LIMITING BEHAVIOR OF THE MARGINAL DENSITY fK(b)

AWhen b is the sample MTBF based on • failures, then under the conditions
given belo the marginal distribution fK( ) converges to the prior distribu-

tion g(O) as K -0. This -is shown in the result and proof 9.5.1 below.
Figure 9.5.1 shows a particular example: the prior density g(e) is plotted
along with the corresponding inverted Beta marginal densities fK () for
K = 1,2,3,4.,5,10,20,50. Clearly, when K is small, it is erroneous to fit
sample values of 9 directly to g(e). When K is large, however, (any K - 20),
the error is not too bad, and sample O's based on large K's can be fitted
directly to g(e). Thus, when K is "large" enough, a fairly accurate method
exists for fitting the prior which avoids the problems involved in using a
mixed popilation model for the marginal distribution.

9. 5.1 A RESULT AND PROOF

Consider a density g(8) defined on (0,j- such that sup g(e) is finite,
and consider a sequence of R.V. 's 1T TK with densities given by

hK(t) = fg(0)fK(tte)de, K = 1,2, ... whe:-e the

0

sequence ifK 3 has the property that V fixed to > 0,

to li < to

1 imf fK(tI)d=o if 0 > t
K -00 0
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LThe above condition is zatirfied in the uim-I Bhyes et-up, -here TK is (uay)A
the sapl ma K bswd an a ,=ple of size K froma (may) an exponential

distribution with mean 6. rar ben E(k -9) = 8, all K, and liz Var( K 1) -0,
K -•

from vhich tVe bOare condition can easily be shcn to hold. ]

Then we have the fclowin•g

WULT: The dJ.. HK(TK) - P(TK < t) converges poinvise to the d.f.

G(6) - P(6 < t), i.e.,V f oxe > 0, such that L, HK(to) G(to).

PROM: Fix t By defin•ition,

*0*

-f g((i)f fK(tI8)ctt da,. asauming the acpproiate
0 0

W&SUM.mbility conditions for ]ubia 's Theorem hol.

Now set Q6)- g(q)f' fC(t 10) dt, at, that 1ýtc) rJ(~.

0 0

Since V 0 and K, Q s() bonded above by s•p g, we apply '

dwirnated convergence theorem and get

S to) / ( f (.))

K - 6LVo o0 0v

to3
_fg(6) LIU f fK(tI)4Lj d*

0
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I Ie
I 0

g(6)de G(t 0).

0 0
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SECTION io.O CQGUTER -FROGRAW MVELOPED

10.1 DATA ANALYSIS PROGRAMS

10.1. 1 "KR"

This program uses data in pairs consisting of 1's and K. s to calculateThis

the moments for the K-R method discussed in Sections 4.1 and 4.3.1 of this
report. The program is designed such that if either the second or the fourth
moment is negative, it terminates and prints "method not applicable." If both

A _7 A A
of these moments are positive, the sample P 82' ' and the estimated

inverted gamaa parameters,, a and are calculated. A list of the program
follows.
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19 PE.P Y
PP #T"II4 ATA .eFT P4O.:"y

30 PPTNT
4P LET 'II:.P
"5P LET V=0:
W LET lf-P
"70 LFT 44:#
M PEAO Kf
941 PP]Tl" ",'-TPF-'o0,. OF FAILtVFES
100 PP P I'M...............

1iF FOP IzI Tn V
I2&' FEAD T,?'130 PPIJPT .,,ItT,
140 LET ¶ql:MI+T
150 LET T:M2+(Tt2)*P/(P+-)
160 LET 9:ls1+(T,3)*(Nt/(+I)*(W.4))

179 LET q4:M4-(Tt*),CNt3)/((P•+|)*(l,?)*('+3))
100 NEYT ,
Iq9 PPINT ---------------------------------
200 PPIRT
?.,1 LET .:-I' ,
P291 LET T- M,/-
730 LET f:k-/Y
240 LTT '•4:-M./
250 PPI T" ¶1
:s#f PPT NT' NP!V
,70 PPJNT" It V

P7O PPI M T" V=• Ta." 44 M?c0• PFJNT1

/110 LET '?2Mt
300l LET ~3M~~M~V2M 3
.11 LET 114=MJ-A*MI*Pff*(f.4I 2^)*M2-.3*(PI1 W4
321 PPIFMT
330 PPT1lFrAMPLF MMFJPTP APOTT MAIL'"
4AV PPI1 T
3541 PPINTECONPP:'lp2
.1 S f PPJ NT"7ITPr:'U3
370 PP I NT"FOlVP T V %14
3PO POINT
Arig IF "2i0P THFV a2e
400 IF 1144F TH4EN A26
410 00 TO 440
420 PPI4T""•T!OD NOT APPLI",PLF"
430 SO TO 530
440 1 ET Pl: I ?)/(012 3)
450 LET eI:FI.o'
44SO LET PP•.-4/(0?t?)
470 PPINTeFAMPLE PFTDI:IPl
4Rl PPIfJT",,APLME e( POCT rF PETAI:PI
4q0 PPINT"FOMPLF PFTAý:"P
VVP LET )l:PI*((PP+,)t?)
510 LET I2:AI(A*P?-3*PI)*(2*P?-3*P1-t)
52e, PPJIJT"FAMPLE vPrA:-vi/vr
53,0 PPINT
540 PPPT=----------------------------
i*l( PPINT
SAP PFIPlT~lmTIMATrp 1tJI SAIMPA PARAMETFPS"
570 PPIMT
W~0 LET L:(^*V-(M I•2))/(V•-(MI V2))

Sesi LFT AzMw*(-j)
•0E' PPIMT"ALPHA:"A
A.I PPI NT" LP-AL:-
APO PPINT

30PPIPT::!---------------

150 00 TO 191
KK o



0.1. 2 "MAYES"

A A
This progam first calculates a andk using equations 4.2.2.1.8 and

4.2.2.1.9. It then ubes these estimates to calculate each of the f(xi)'s

according to equation 4.2.2.'.2. The Xý cells ýnd the upper class limits
are read into the Rrogram and it computes the X value by equation 4.2.3.1.1
and prints out a )- value to be compared according to the method described
in Section 4.2.3.1. Following is a list of the program and the printed re-
sults used in this study.
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"fAYES R431 VED. i6/9p/6.

IN IDIN Z(59),E(59)

21r D(2), Of1) ),mc2N)
39 LET T:4342d
40 READ A
SO PRINT "IATA IET NO.-A
W PRINT
79 LET Z9:l
* FOP 1-2 TO Sp
.q LET Z(l):p
ltn NEXT I
III LET Wl
121 LET 9:9
131 LET Y:z
141 READ fF
156 IF K:959 TMEN 249
260 IF V4 TPEPI 19
171 LET ZU:F
I11 10O TO 290
I9" LET Z(V)?F
290 LET Y:Y+F
21t LET ItWY*F
226 LET S•r-C(t2)*"
236 GOC TO 146
240 LET Wm/y
250 LET S:S/y
266 LET v=-N(m2)
276 LET A:(I*T)/(V-N4)
269 LET L:(A*M)/T
290 PRINT "ALPWA••A
300 PRINT "LA•PIt::L
312 PRINT
326 LET P:T/(T+#)
330 LET Q:A/(T+A)
340 LET EI:(QtL)
356 LET EP:Eioy
366 FOP Y:I TO Se
.370 LET Ir:(QtL)*(Ptx)
389 LET PIzI
S•S•0 LET P2:1410 LET W:L+X-!
416 FOR IrI TO Y
426 LET PI:PI.w
430 LET P2I:l2?
440 LET Wv.-i
456 NEXT I
460 LET E(Y)".-II*P/
476 LET E(X):E(Y)*y
49 NEXT Y
496 PRINT
509 PRINT
5i6 READ Cl
526 PRINT *W-O Or CHI QUARUR CrLLS:gCi
539 PRINT
546 PRINT "CELL MNt8lPE,'UPPFP LIMIT'559 PRINT I ..........................
Me FOR 121 Tn (1-I
970 READ p(I)
Wt9 PRINT 161(1)
S" NEXT I"t69 PRINT el
6I6 PRINT

*620 LET G(I"!Sr43 LfT N(I)tES

W09
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4"I LET 8(1).=0

66 LET N(I):I
7•7 NEXT I
M PIO .O Jl70 TO I)
4U LET M(I)0(1)+Z(J)
WO LET f(I)!0(I)+EtJ)
710 NEXT J
7T FOP le2 TO Cl-I
730 FOW JP(1- )+l TO P(I)
746 LET A(I):A(1)4ZJ)
750 LET R(;):zV(I)+f(J)
7"W6 DET J

773 NEXTI
786 LET SI=9
79/ L"T TIc$
06 FOP I:1 TO C1-I
316 LET S92SIf+1(I)
M LET Tl:Tl+H(V)
on .EWT I
I4l LET G(CI):Y-rI
650 LET P(CI):Y-TI
M LET C2:3

37 PRINT "(GELRVtD","EXPPC7EP"
06 PRINT --...........................
009 FOP :t TO CI
6 PRINT fA(I),o(I)

911 LET C2=C24.((O(!,-II(1))2),H(1)
It$ NEXT I

936 PRI NT
140 PRINT 'CRI PPLlAP:"C2
"s PRINT

973 PRINT

"s 60 TO so
IPW DATA I
lift DATA 113,2,1 3,4,4,4,lI,62,7,l1N4 DATA P,4,Io II t 3oI,17,I,19 I o|I .993t,393I936 DATA 4P 31t

100 DATA I:IIo3,131! 3,16,09497,593,6,4
1tO1 DATA 7,?,0,409,7,100,313,1,14,3
1012 DATA 1,lI ,3t,2t,1,44,o
1114 PATA 993,99"

IMlS DATA 3l4,6,tl,.,
Iiile DATA tIA*2oI o, 4o3, o6o3,s,?
W23 DATA o6,1,9l,2,13,2,1,,l, o '.29,11022 DATA !99,9t9f124 DATA to 19013,1,1,2,4
1032 DATA I4lp,2,ll, o A ,4,6, ,lS,2,7,3
1132 DATA 1tSlo,l3,lIol2,I,9 97q3

1I39 DATA 4,21,t,4,6

1133 DATA 1,t9,
1046 DAT# PtI9 I,sqq,q99
164t DATA 5,1,2,4,f.4
1144 PATA I,11,2,16,3,S,4,2,5,$,6,$,7,3,.,4
1646 DATA 1|o4,11olo12,St13,1,15,1,99,.-
100 PATU 5a13 7,t1I

lfS3 DATA to ,1152JP T'ATA tI,9l,12,l~l t5oolS ,l o Sol9,'oR9l154 DATA 4,1,3,5

uo



ii

IDAYS 8.13•7 V"'p Is foet/9

D1ATA SET 50. I

ALPHA: 127•4.1G
.AIPDA= ) .24991

NO. OF CHI! SQUARE CELLSV 4

CELL NUIMER UPPEP LINT

2 3
3 7
A

MOSEP ? EXPMECTE

13 12.726T

8 11 .972LI
f 7.24690

IN;i SALUAPE: 1.35756

IITA &ET NO. 2

ALP14A: .1.5."I

qO. OF CHI SQUARE CELL.S:

CELL OJP"MP IPPEIR LIMIT
*I I

3 3
4 4

6 6

1 15

l I I7.If'I4 ,-

1I 7.5"l91

I5 16.4531

6 4.30335

~I• *qUAPE: Ii.17651

•illItl~l til IIIIC'.=I Illlll= II 111 ll



it

DTA SET NO. 3

ALPHA: 727.436
LAPPDA: .756319

4o. OF CHI SPQUAPE CELLS: 6

CELL NUIBEP UPPEP LIPIT

I I
2 2
3 3
4 A
5
6

MSEPVET' tYPECTEt.

14 22.4572
12 6.63259
is 5.2156•I~ .1919
7 I9,4516;

Oil SOQMAPE: 21.9927

DATA SET NO. A

ALPHA: 3609.57

40o. OF C(HI SOUIAPE CELLS: 4

CELL 4UIJEP UPPEP LIMIT

--------------------- I-----S-

2 2
3 4
4

(ORMElD IYPECTEr

It IS.89III I 9.14t?51
it 13.4"17isI 12.4797

O R ,•IUAIP[z 1.314f
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DMTA SET NO. 5

ALPHA: 7584.73
LABIA: 4.05817

NO. OF CHI SQUARE CELLS: 4

"CELL WUSEP UPPER LIMIT

! I

2 2
3 4
4

(FSERVED EXPECTED

22 15.9716
7 8.678'11
5 10.3F53
6 4,%47tm

0(1 9Q'JAPE: 5.61fIf

DATA SET NO. 6

ALPHA: 2251.61
LAIMPA: 1.73419

WO. OF CHI SQUOPE CELLS•: 5

CELL WNBEP IPPER LIMIT

I I
2 2

3 4
4 6

,PqEPVo EXPECTED

21 I8 .3U5

it P.79374
III 12.7930

7.3354
7 7179,T5I

0O1 SQUARE: 1.51224

U3:



ItATA SET 00. 7

ALPHAPA 1767.69
LAMPIDAz 1 -7662

4oD Off CHI QUAPE CELLS: 5

GLL OUIJPEP UPPEP LIMIT
I I

2 33 7

(i~EPVEDEXPECTED
isl 13.2822

!It 1it7591
9 9*23432
6 440SP•6

OKI SQUAP.-= v,4213

fATA rT NO. F

ALPHA:- 770,1904
LANDA: G%2p..6

4-o O( CHI SUAPE CFLLS: 4

CELL NIJPEP UPPEP LI1141

2 3
3 5
4

appv U*eE~PCED

116 2le.t3eI ? I*.S96~l

P 6.11726
9 .123434

Q I RQUAOF2 ?.67972

U4 1
A
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10.2 SIf.IATION

10- . "W•ES 2"

This is the sinlmation described in Section 5.2.2.1. e fom of theProgram, as it was useds follows.
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OCCC DIMENSICN N(6),Kl43,NCE'I6}
CCC2 DIMENSION IPF6,4921 ,THET(200)
0CCl DIMENSION GMAkK(lqltCSt(6hCS?(61,tQ1200
0004 UIMENSICN 7PARK(19INGTALI2OI.EG(2O)E'121)htW{20)eDNII9I.OW(191
cuCs DIMENSICN INPFI6,4,2I,INPFI6,42ltICC{LUMI4)
OCC6 DIMENSION IlA(61,IC216.1IC3(6)
OC00 DIMENSION XGAMI9919XWEE•I 99XXNRMI0ql
Does DIMENSION YGAMI99t41,YWEIB(9q,41,YNi4MI91,41
0CC9 UIMENSICN IUPF16,4,2ltIC4(61
CcIc DIMENSICN EUI20,DU120)
CCIl IX=48828125
0012 5 FORMAT(6151
0013 1 FORMATI615I
0014 IC FORMATI4I05
OC s 15 FORMATI6FIC.31
0016 2C FORMATI!OFB.5/IOF8.5?I(FB.5/I'FR.5/IOF8.51
DCI? 25 FORMAT 4FIC.2,lI0v4FI0.5)
OClC K0 FORMAT (IHI/ISH INVERTEC CAMMA,20X,7H ALPHA=,3X,FIO.4,IOX,6H LMDA-

194X.Il| /7H LOGNRM,2SX,4H MU=.bXFIO.S,IOX,TH SIGMA=,3X,FIO.5/6H
2WEIBLLL,22X,IH ALPHAz,3X.F1S.5,IOX,6H BETA=,FIO.5///)

CCl) 35 FORMAT(IOX,3H =.14t//IOXlH K=.I4//l
0020 45 FORMATII/IIIOH CELL NO. ,I0H CLASS 91OH CBSERVEC ,1tt'J EXPECTED

19,I0H EXPECTEOIOH EXPECTED /IOX,lOH MARK ,OX, l0H INV GAMMA,
210H LOG NORML,lOH %eI$ULL //I

CC21 5C FORMATIICOFtC.5SI I0)F1O.5)
0022 55 FORMATEIIOIOXIIO,3F1O.5////?OX,1&H CHI SO VALULS//2OXIOH INV GA

IMMAIOH LCG NCRML10H WEIBULL /2nH CCMPUTEC CHI SQUAREt3FIO.5/
22014 90 PERCENT LEVEL ,3FI(I.5/20H 95 PERCENT LEVEL 91FI0.5)

S~~CC23 6C FORKATIIIICH eeteteteettett//)
0C24 IC FORMAT (///2OX,75H SUMMARY OF RESULTS AFTERI5,8H TRIALS/

120X*25H LEVFL I1.70 LEVEL 2T.95/ 20X, 7H ALPHA=tFIO.5Str,8H LA
2MBOA-0,I IC/l

CC25 I5 FORMAT(2OXvH LFVELý1I2///1?XI5H INVERTED GAMMA//I)
0026 It FORMAT 11O0 N*6IIO!/1OH Kz/)
0027 80 FORMAT 17110/)
0028 85 FORMAT(///2GXIIH LCG NLRMALI/I)
CC?, 87 FORMAT(///20XdH WEIBULL//I)
OC3t 88 FORMAT (///20XBH UNIFCRM///)
0031 q9 FORPATI/ii/2CAIOH ****#***/f//)
C032 91 FORMAT 171i1/dX,2x L,6IIO/8X,2H W,6110/8X92H U,6110/I)

CC3) 96 FORMAT (III20x,I2H ALL 4 TESTS/tI)
0034 97 FORMAT II5FB.2,8XvFR.2,8XF8.2)
0035 99 FORMAT 134H TABLIE cr SAMPLE PFRCENTAGk PCINTS/

123H CF THE MARGINAL FOR K-*1S//5Xv16H INV GAMMA .16H LOG NAM
2AL 9RH WEIBULL//M

0036 142 FORMAT (IOFR.2/ICFR.2/IOFs.2/IOFR.2/IOFR.2/iOF8.2/IJF8=21IOF8.2/
CI0F8.2/qF8.2)

cc17 REAC (5,951 (NIJ).JtA.6
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ecr READ (5.I1) (KCFHJ),J=1,6)

CC4C READ 15,151 (CSI(JhJ-I.61
C04I REAC Ii, 151 CS21JJIvJ-,61
CU4? ICC READ (5,251 ALPtLAMAUtSIG,wAlP.wtBEr
CU41 )F(ALP.EU.qqg.) u, rC q99
C044 0O IC2 J=1,4
0(4r REAC (5,142) (xGAMfIII=I,;q)
C C 4• fREAD (5,142) IX•yRP0(),i-lqqI
CC41 REAL (5,142) (XWLIB(I),T=Iv99)
•C4q KO -ýI J I

CC4a wRITE (6,q91 KC
5p DO Se I= I 1,99

ýCC I WRITE 16,971 I.XCAo(II,(NRm(II,XWFI9VI)
Ch?2 1)8 CONTINbE
CCSi wRII0 1(6,60
CCý,4 DO 1£] 1=,3
rf. )1 XGzxGAO( II
r?'6 YGAPII,J)=XG

C,' )I xN=XRtA( I I
r cS 9YNRP(IIJ)wXN
CC51 AW=XkEIBtII

Cch( IC3 YWEIB(I,J)-Xw
CC61 LC2 CONTINUE

CCh BuNIF-2.*( C ./2.)**,5)*503.

C(• WALPz(AMU/GA(MA(1.4I./WBFT))S*WBET

eCC kRITE (6,30) ALP.LAMAfU#SIG,WALP,WBEr
CCt6 AMUI=ALOC, (AU**2/iAP~L**2÷SIG**2)**.5))
C•67 SI(I=(ALr)GI(SIG**2,AMU**21/AMU**2)l**.5
CC6R AMU.AlAUI
Cc6t SIG=SIGI
CCl2 DO IlC I~1,6

Coil 7 ~ 1 ; 2C J-1,4
C0f,7/ 00 7M3 KK=1,2
COII INPF(IJKK)=C

CC74 INPFIIJKK)=C

Jr 73?,TC CONTI'.uE
CC?A 12C CONTIINU
CC? 7Ic rn'NTINUE
0( 0 ITEN-C
CCdl DO 7CC LrrPzl,lCrr
CCP2 1-6
crp8 NCELLsNCEL(Il
Oe,4 It? NO-N(I)
Crp', IN'NCFLL
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0086 MCELL=NCELL-1
OC87 XNCmNC
Crp8 00 I2C J=1,4
Creq KOxK(J)
OMq XKKKC
Ocqi CO 127 IA-1#99
CC92 XG*YGA1'(IAvJ)
0C93 XN-YNRPIIA*J)
OC94 )tW-yWEIB|IIAJl

009s XGAM(IA)=XG
OCq6 XNRPIIAI-XN
CC97 XWEIB(IAI-XW
0C98 127 CONTINUE
009( CO 119 JX-t#I.CELL

01Cc ZJ-JX
0101 LMARK(JXI*ZJ/ZN
0102 l10ZZARK(JXI
01C3 DO 123 Lwl.9q
OIC4 XLaL
0105 XL-XL/ICC.
OIC6 IF IZM.GE.KLJ GO TO 123
Ol10 GMwXGAMIL-I .IZ -XL+.Il)I.OI)*Ix•&PiL}-XGA•L-I

V OIC GO Tc 118
"OC9 123 CONTINUE
0110 l11 G"ARK(JX)=-G
O1i1 itq CONTINUE
0112 00 121 JX-19MCELL "
0113 UmGMARK(JX)
0114 CALL LCOKUP (XWEISUPDhE)
0115 0WEJX'OhkE
0116 121 CONTIMUE
oil 00 122 JX-91.CELL
0119 U*GPARK(JKI
0119 CALL LOOKUP IXNAMUONC)
0120 DNIJXI)WNC
0121 122 CONTINUE
0!22 00 740 JXsIMCELL
0123 U*GI'AAKIJX)
C124 IF (U.LT.bUNIF) GC TC 150
0125 OUIJX-I.,
0126 GO TC 740
0127 75C IF (Q.GT.ALNIF) GO rc 760
012• OU(JXI=O.
0129 GO 10 7400130 760 OUIJXI-IU-AUNIF)/IBtINIF-AUNIF)

C1ll 74C CONTINUE
013o EGIIIuXNC*ZOARKI1)

J 0131 EGINCELLu-XNC*l1.-ZNARKIMCELLIJ

ifi J
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0134 ENII)=XNC*ON(1I
0135 ENlNCELLI-XNO*I1.-ONiMCELLll
0136 EWIII-XNCO0DIII
0131 EWI(NCELLI=XNC*II.-OW(I0CELLII
0138 EU(II-XNC*OU(13
0131 EU(NCELLI-XNO*(I.-OU(IOCELLI)
O10O IF INCELL.EQ.21 GO 7C 126
0141 00 L24 JX=2,9CELL
0142 EG(JXEIXNC*(ZMARKIJX)-ZPARKiJX-3))
0143 EW(JX)-XN0*(CWIJXI-O6Jx-1I
0144 ENIJXEIXN0*ION(.JX)-ODNJX-1I|
0145 kUfJX)IXNO*OUIJXI-CU(jX-III
0146 124 CONTINUE
0147 126 CO 125 IIs1,NC
OL48 Q(IIIxfC.
C14q 125 CONTINUE
C150 00 13C II-INO
0151 CALL RANOOlIXIYY)
0152 Ix-ty
C153 CALL VRTGAP (ALP,LA?0,YTITHAI[
0154 THET(III-THETA
0155 00 150 JJ*19KO
0156 CALL RANOO(IX@IY.lI
0157 IX=IY
015m S--THETA*ALCOGIZ015q Q(lll=O(lllS

0160 1SC CONTINUE
C161 QIII=Q(III/XKG
0162 13C CONTINUE
0163 00 170 I1T1,NCELL
0164 NGTALIIT)-C
C165 17C CONTINUE
0166 O0 180 ll-INC
0167 00 ISO IT=IPCELL
018 IF (CIII).LT.GPOARK(IT)I GO TC 200
C161 GO TC 190
Cir0 2CC NGTALIIT)-NGTAL(iT|I,
0171 GO TC 180
01?? I" CONTINUE
0173 NGIALINCELLI-NGTALINCELLI+1
C114 180 CONTINUE
0179 CSIG,0.
0176, CSN-C.
0177 CSN'C.
0171 CSUwC.
0173 DO 23C ITmI,NCELL
OLS0 FNGTAL(IT)
CIPI CSIG-CSIG.IIF-FG(ITII *2IIEGIIT))
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O01W CSN-CSN+(IF-EN(ITII**2)/IENIIT))
cil8 CSIiCSI+(IF-EWiIITl*2)/(IEW(ITTI
O1w' 23C CONTINUE
0185 NGTALIq1)=NGTAL!I1)+NGTAL020;
01F6 EU(1-=EU(Iq9)EU(20(
0127 231 00 232 IT-lIq
Olbd F-NGTAL1IIT
0189 CSUUCSU÷|IF-ELI TIT**2)/(EUI IT))
0190 232 CONTINUE
0191 IF ICSIG.GT.CS1(lM GC 10 260

0193 26C IF ICSIG.GT.CS2(I) CGC (C 280
utq4 IPFIloJ#2)-tPF(IIJ#Z|*I

0195 290 IF (C.N.GT.CSIIIl GCL TO 300
0196 INPF([.jII-INPF(I,J#|}+l

O01M 300 IF ICSN.GT.CSZ($Il GC TO 120
0198 iNPFfI.Jt21=INPF(I.J.2)÷I

c01q 32C IF (CSW.GT.CSI(Ill CC TO 340
0200 IWPF I.J.1IIWPFPI,J.II*I
0201 34C IF ICSiGT.rS2(If) GC TC 765
02c? lWPF IJt2)-IWPF(I#J#21+I

02C3 165 IF ICSU.GT.25,989) GC TC 76?
02C4 IUPF I9J,.IDIUPHI*.J.II÷I
0?0C Y67 IF ICSU.GT.28.A69) GC TO 120
0i•'6 IUPF [.J,?),IUPFIIq..*?.I+I

12C7 12C CONTINUF
02Cb ITEN-ITEN+l
020q IF (ITEN.Li.501 GO TC 700
0210 WRITE 16,0C$ LCOP.ALP.tAt
0211 DO 37C KK-1,2
0212 wRITE (6,751 KK
0213 WRITE 16,721 M1019M-1.61
0214 00 380 J'I,'
021t DO 49C IM1,6
0216 ICOLLPI[}%IPFll.J.l•ml

0231 39C CONTINUE
02IR WRITE 16980) f(JI.IICCL•V#I #I-tI= 06

C219 380 CONTINUE
0220 WRITEI6&@Si
0221 WRITE 16,77t (N(N,•1.61
0222 00 6c J116.4
0223 00 49C It,6
n224 ICCLUNI )&INPFII*JKKI
0?2r' 490 CONIINIA
C226 WRITE (6,80) K(JI.(ICCLU"(Ii#I-I#6!
P221 480 CONTINUE
0228 eRltITE6871
1229 WRITE (6.7T7 IN(It)tMI.6

12



0230 DO 580CJ-I,4

C231 00 590 1-1.6
023ý' ICOLU•lI)I|= PF(],JvKK)

0233 59C CONTINUE
0234 WRITE (69801 K[Jlq(ICCLUM(l)I}=I*'=[

0235 S80 CONTINUE
0236 WRITE (6988)
0237 kRITE (69M11 (NlFi),M=1,6)
023 D 0e80 J=1,4
0239 00 890 IZ'.6

t0240i ICCLUM(IlIlUPf(I.JvKI

0241 90 CONTINUE
0242 WR!TE (6,80) K9J).I*CCLUPIIh*IwL#6)
0243 sea CONTINUE
0244 WRITE (6,961
0245 WRITE (6,771 INI(Mh4-1.6)
0246 CO 680 J-1,4
024.7 00 69C I-Lib
0248 ICI(I)sIPFI!tJ.KK)
0249 |C2(I)'INPFf.J*KK!

I :C25C IC3(IIWIWPFII*J#K,",
0251 IC4(I)-kUPFfI.J#KK)

G252 690 CONTINVE
0253 ARIE 16991) K(JheJCIILI . ,619,11C21L),tL-1,61.IeC3(LI.L'16)

CtlIC4(L),PL-16)
0254 680 CONTINUE
0255 wRITEI6.90)
0256 37C CONTINUE
0251 WRITE (6,6921 IXS0259 692 FORPAT I1OX#4H IX-tl20)

025q WRITE (6,601
0263 ITEKsO
0?61 ?CC CONTINUE
0262 GO TC 100
0263 99q STOP
0264 ENO

A ,_. .. .... " .: : .



Coot SUORVLTINE LCOKUP IARRAYvUOP)
0002 DIMENSICN ARRAY(qql

Cccc 0O ICC L-ltqq

OCC4 IF (fL.GE,.ARRAY(L)) Go TC 100
000C PIsL--
00C6 PLuPLCO.
DCC? P=P1.,OI.(U-ANRAYIL-I))/IAeiRAY(L)-ARRAY•L-iI)
Dole GO IC 200
OCC9 ICC CONTINUE
Dole 2CC CONTINUE
ccil RETLRN
0012 END

iil

F
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I

CCCt SUBRCLTINE RANCO fIX.IV,YFL)
CCC? IY-lx55)9
COCi IFrllv 5.6.t.
"CCCI, J IY lV* 1474d3f It*
CCCs 6 VFL-IY
OCC6 VFL-VFL*.4fS66|lp-q
0OC? REILAN
CC123

fI

SL' I

123



CCrI SURRCLTINE VKTGAP1ALPLAI0,PTHETA1
CCO2 ALAP-LAM
OC03 AMUALP/IALAM-1.)
0004 50 XIl./ANU

CCC6 ICCLNT-C
COC7 1oo V=I.
0Dor S-1.

CcCq 00 150 K-I.FA
COlO FKaK
00al ¥aV*(ALP*X1)/FK
002 S-Stv
CC13 15C CONTINtiE
CC|4 X2EXI4(IS*EXP|_ALPOXI)_II._PI)/IALP*V.EXPIALP*XI))
Cli• X3*X?-XI
OC16 FAASSABSIX3)
CCi7 IF IFASS.LT.O.o0000o ) GU TO 200CCIII1=X

0Oiq ICCL&T-ICCUNf+I
OC20 IF IICOUNT.EQ.20) GC tO 250
CC2i GO TC ICC0C22 2fC Tf-I.tX2

0021 IF (T.GT.O.) CC To 300
OC74 2C Ri" E6,240) P
CCiS 240 FORPAT 11112H HUNG UP ON 9FIO.SIu)
CC26 26C PwR*N(0x)
0027 GO TC So
002b 3CC TMETA-T
CC2q REILRN
•Con END
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"O2 BAES 12"

"Thbs is the 6imulation progrma described in Section 5.2.2.2. A listof the program follows.
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I!
ii

00(11 L)IMENSION VRT(V 11tWF5IB(S I)ZLUG3I )
0002 DIMENS ION IRAND(Sit) XRTGIS1) XWEI|B8I51XZLOGI5II
00"! UIMENS ION lO(201 .iGI?0i1'4GI201,tHw(Z0 t4L4(20
00)4 JIMENSION CUM[4!|51)
00o) IEX=48828125
O000t) in FAD | S1 51 ALPtAt.AMvAMU9SI1;tWALPWiSE r IMFE
000? 25 Fr)PMAT I "F 10. it
000P IF IAI.P.rQ.999.) ý;1 TO 999
00114 MW ITF I 6o041
0010 S4 FORMAT (1//5X,2%4 *i*O**************,#lfl

0011 WALP=I AMU/GAMMAI1.+. /WSETII )*eWBT
0012 WRITE (6930) ALPvALAMvAM1)vSIGWALPtwbEr
0013 30 F19MAT t |OX,2FrO.l//iOXt2FlC.S/;13X.2FL).5!lIl
0014 AM Llaq L061 AMIf**2 /I I AMU**?+ St GO*2I **.S| I
0015 S1GI=IAL3G((SIGS*2+AMUt*0)/AMUQS•i**.$
OOlt AMLxAMUI
001 7 SIG-SI(; I
0018 DO LII 1=1,19

OOiq Vm TG( 1 =O0.
0020 WF Itf! I 1-0.
0021 110 ZLOG(I) 0.
0022 1G=O.
0023 Z W-0.
0024 IL=I.

C

C MAIGINAt FOR INV 3AMMA Pinion
C

0025 P-TIMr /I TI MFALPt
0026 3uALP/ TIM•÷ALPI
0027 VR TG I ) 1PQ**LAM
0028 XTAL-VA TGI I
00?9 CUMIGI |I-XTAL
1030 of) 120 Ju|,7
0031 F-IQ**RLAM|*(P**J|
0032 P1-i.

* 0031 P 2a,1.
0034 XJ-J
003% W=ALAqt.XJ-1.
0031, no 130 11t,J
0037 P l-p l*W
o03q XI-I
00.9 P 2-XI*P2
0040 Woh- 1.
0041 130 CONTINUr
0042 VRI TGi J+1)of /P?
0043 XTIL-XTAL*WT3 I J3. I
004' C UM IGI J4,I -XTAL
0045 12C CJ•J T I UE
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004.L ZGsl.- XTAL
C
C PARQSJAL FUR EIIAULL PRIOA
C

0047 00 200 i--|, %Or)O
0048 CALL :APNOOIIXVyP|
004q I1wtY
000,3 THFTA.IWiA* L(G I./Plel**(!./jIETI

005? CL(rk*,O.
0053 ,25 CALL ZAN-0(IX*IY*,I-

0054 IX-I!
005C T--ThiTaret. G Ir)
005fo. cLCC t .":Lrz.
0057 IVIFL0K.YT.TIMF) GO TO 300
0058 IFIK.L".,8) ,;n TO 201O0SQ I WWI[ " 1.

o00t ý;O TP 2101
00b t 201 , -I*I
0062 6n• TO zso

OO3 3(,n MEIBIK.I1=I*kI(K.|1÷I4.
0064 2rp :nNT14UF

0065 .If' 310 1=198
006e, 110 81 1 1i*1F 10111I!0000.
0067 LW-l lIf)00•.

C MARPOP•$L FOR L"GNOR•AL PQIUR
C

0066 D.'1 40n 1-1,10000
oo69 A-P.j
0070 DO 450 J-1912
0071 CALL AI.OlIXvIY*Y)

0072 IXaIY
0073 45n &,A5yOv 704 1"HE TA,. XPl - 6. OI*tSI S ÷A UI
0n7s K-('

007o C, LOCK=0.
0077 W, CAlL AN)O4IXIY,FI
0078 IX-IV
0070 Ta-THfTI4*ArlcXFI
0080 C LOCK-:LO,:K÷T

0081 IFICLJCK.3T.TIFEI GO TO 480
0082 IF (r.LT.6| 30 Tn 4?0
0083 lL'IL*I,
0084 GO T3 400
0085 470 K-u8÷
0006 GO TO 460
0087 488. ILCG(K÷+I ulLO$IK4Ilo-.
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,)•eJ• 4C0 CON r l.lUE0069 00 41n !-!,a
009 41(1 ,l LING1 I l-?LOSI I I /I 0q00.009 i IL-L/1I 0000.
o00w D.-) 50' L*1 o6
0043 REA •(i'vil No
0094 5 FOR~qAT( 151
0095 R•R I TF I to,qb 961 4
0 0 9 c, 9 6 F O P M NA T q j/ I | Ox , 3 H N e 5

00q7 ~~READ|5,e0 IOI •1.CSI, C 52009~d 10 1-OaefU T( I to, 2F I a. 510099 JC 14, 1: 1- t
0 0 1t o n • 6 0 0 1 -1 , • 1 I

0103 IN0 OI 1- I I#

0105 onr ?On Jl 'sA
0106 XV tG, lI ),VP lT, i I)* 

mx~0107 XNEL4 IB I iai* Js| I I OXNCO0106 -(ZLnGI l -Ztr*3( I IXNU010 o 0 CINTINqUr
0110 XZ C.M?^,*XNu

Gill XZ kal W*XNO
!0112 X, L I L *XNO

0113 IPG t -o

0i1s Ip it-tw0116

oily Ip N2.0
OIIB IPL 2-=1
0 il19 Dnr q01) In LIP -I,IOon
0120 

00 4q1 !-I,R
0 12 1 4 ,•V IR A N In ( I)- o
0127 I•1-at
0123 

U)O 6 I -/10 ,CI0124 
IGI I|-

0125 HGI I*O=.
012.6 00o I )aft.
0127 LIc cI-n
0128 61C CONTI0 uE

OIZ9 DO Sin IIml,N(O
OL~rn CALL ZAN3OJJXIY,Zj01 61 IX-Iy
0110 DO X•2 J.lA0133 IFGIL.Ci uMIIJj '0

0134 %20 cok, 11 •UE O 0"301350128



0136 GO 0 510
0137 530 IRANO J-IPAtINDIJI*t
0138 -10 CONT14UE
013Q IF IL)OP.NF.1I GO TO 910
0140 Wit ITF( 6t991
0141 9q FORMAT I///l8XZH KSX#" F.XPtCTED96XIN D(PlCTED6K,%9H EXPECTEP,

16X,9H ri8SEPW)f/SXJtOH INV GAMMAtitol)4f WEI|JLL ,SX* IOH LUG PbRML
2111

0142 DO 600 Istoll
0143tJu-!
0L44 W IttF t69981lIJtXVRT.•ItIX*IbtIltXZLO~G(itllRANO|II

0145 98 FCIPMATIlOXlN ilSXWF|O.StSXF1O.55Xgfl).SDICF1l),X
016 820 CONT1rUF
0147 WRITE 169971 XIGoXZI*ZZL*|R
0|48 9? FOPMfAT( IOX98H (IVF 7tTXtFIO.SgSXtFlO.itSXtFl).S*SX9 |t01

014.q q H 10 1uI- t 1)
0150 00 6,)0 J-=1.J1

0152 HG(III-HGt I IXVF TGt JI
0153 HUI 1( )-HI. )*XWFlIt IA
0154 HLtI I-NHL( I ).XwLF!iJA
0155 620 CONTINUF4
0116 IGS-G( I1I
0157 HG S*HC,( 11

0157 HhWS.NIJ( 11
O 1 sl HL $-Ht I I

0o0 IF I I. I.E-.2S nn TO 64SI
0i74 630 6 tYJPE l
0162 J645 41=t-11#1

0176 JNGl~tC1-N-l

0174 DO 640 J,,JtIJZ
0178 IG tI)-Xt4! I-tANO( Jt
0 tbt) "G( I )=HG( I I÷XVP rGt JA
0 167 "WI( I I.HIf I )+ xwr 1 It At
01t68 HLtII )*HLt I I+XZ LO(,tI JI
0 1 t9 640 CON TINMUE

0170 IGS"GSl.512tI
0111 MG smX. S+"34( 1 1
0172 His $a HWS+Hil I I
0173 MLISoeHL S*HL I I I

0174 630 CONT.
0115 645 1tI~iCI I,*NO-I1.5S
01L76 HGI IC I1 I-XNO-04^ S
0 17? HWt IC It 8XNO-.4wS
0178 HLI tC I)XNC-4LS
01719 C SG-O.
0180 C Sk=O.

0181 C SLuO.
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016z LbO 654n IS1.t1
OW 0183 G. I I
0184 rSGBCSGl I G-HG M) e*21 aGI1)
OIS CS"CSwi. I G-'4W I I 1)4*2) MW( II
01O8e CSL=CSLI1O -,4L( fIt**?) /HLN(1
OI?7 650 Ct1NTI•'o'E
S! 0188 IF MfPo.Nf.1l GU TO 920
01u9 AITFi 6,931C SG 9CSWiC SL. CStCS ,CSt 9CS? ZCS!2CS2
0190 q3 FOP"ATI///IOXOOH C¢i SQUA01E VALUES/Ii)(,3FIt.'5I1O,3F1O.S/OX,3FI S• C0.5/1)

0191 0 IT[ 16,9,,
0 192 95 FORMAT If///OXt,14 *,e******Ijtl|
0103 Q2n IF (ISG.CT..SEi GU T(O q300!! 194 ,•.,,TO'1+
0194 IPC.InIPG2.107Oq 930 IF ICSG.GT.Cc.2 GU TO 940
0196 iPG2uIPG2* I
0199 940 IF ICSw.GT.'Sti GO TC 950

0 l*q ;50 IF (CSw.GT..S21 GO TO 96f)
:: + O200 Il' A2,wlPW2÷ I

0202 IPLI-IPLI+1
0203 970 IF ICSL.GT.CSZ2 GO TO 900
0204 IPt 2=IPL2+I
020 O 900 CONTI4UE
0206 WRITE 46,921 IPSG1,2IPl2,t*uIPWZ#IPL1,IPLZ
020"7 92 FORMAT. I/II/[bEX,in4 SUfHIM7/fId•;i-IIWrx,2i1T,

CI0XI0H WEI[BULL ,SX,2IS//IOX/ION LOG NORfMLoSAP215f/I
0200 0I1TE 16,9941
0Z09 500 CONT1PUF
0211 oG To 0oo
0211 9q9 STOP
0212 ENV
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0001 SUSROUTIN4E RAN"' (IXIYYFL)
00012 Yu[iX*65539
0003 IF(IfY) 5t6?6
0004 5 JYsIY 21474836?+*l
0005 6 YFLaiY
0006 YFL- YFL*,. •t5661 3F-9

0007 ETUA41 ~ ~0008 ENOFL.E663~
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i1 SECTION 11.0 RE•IRENCES AN~D BIBLIOGRAPHY

Section 11.1 of this report cor~ains a complete list of' all the refer-
ences used for this study, whereas, Section 11.2 is a general bibliographyA}:i containing sources of material on Bayes reliability, in general, and is

~ f menant only for tbe readerc use and convenience.
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This final renort ig a result of a study performed for RADC under Contract Number

, 'The rurnose of the study was to fit one or more prior distributions

to : =... = ".lean "'ie Tietween Failure. In particular, the objectives were three:

(k.) establish criteri-t for data that would be suitable for fitting prior distributions

1. ,2. (b) de,veloar methods of fittinr and fit one or more prior distributions;

qtnd (c) nerform 'obut.ne.ss analysis of ritted prior distributions.

It. was ,.iscoveret that. Jf the number cf identical equirtments and number of failures

c,"rvedi per equinment are relative], small, special methods of fitting are required.
Tlor the, datn. used in this study, the inverted part..Rn distribution turned out to be a

"po-d Prior '.it.
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